Edexcel Maths S3

Mark Scheme Pack

2002-2015

PhysicsAndMathsTutor.com

-	estion mber	Scheme	Marl	KS
1.	<i>(a)</i>	Stratified	B1	(1)
	<i>(b)</i>	Label De-luxe rooms 1 – 20	B1	
		Using random numbers in range 1 – 20 select 2 rooms	B1 B1	
		Repeat for Premier using $1 - 40$ and select 4 rooms	B1	(4)
		Repeat for Standard using 1 – 100 and select 10 rooms	(5 m	arks)
2.	(<i>a</i>)	$\mathbf{H}_0: \mu_A = \mu_B \qquad \qquad \mathbf{H}_1: \mu_A \neq \mu_B$	B1 B1	
		standard error = $\sqrt{\frac{9.1^2}{100} + \frac{8.4^2}{120}} = 1.19$ (awrt)	M1 A1	
		$\alpha = 0.01 \Rightarrow \text{CR}: z < -2.5758 \text{ or } z > 2.5758$	B1 need l	ooth
		$z = \frac{70.6 - 67.2}{1.19} = 2.86 \text{ (awrt)}$	M1 A1	
		Since 2.86 is in the critical range, H_0 is rejected. There is evidence of a difference in mean playing time.	A1ft	(8)
	<i>(b)</i>	Central Limit Theorem applies to enable normal distribution to be used.	B1	(1)
			(9 m	arks)
3.	(<i>a</i>)	$\overline{M} \sim N(80, \frac{2.6^2}{10})$ or N(80, 0.676)	B1 B1	(2)
	(<i>b</i>)	$\overline{M} \sim N(80, \frac{2.6^2}{10})$ or N(80, 0.676) $P(\overline{M} < 78.5) = P(z < \frac{78.5 - 80}{2.6/\sqrt{10}})$	M1	
		= P(z < -1.82)	A1	
		= 0.0344	A1	(3)
	(c)	Let W = weight of all 10 people		
		$W = M_1 + \ldots + M_6 + F_1 + \ldots + F_4$		
		$E(W) = (6 \times 80) + (4 \times 59) = 716$	B1	
		$Var(W) = (6 \times 2.6^2) + (4 \times 1.9^2) = 55$	B1	
		$P(W > 730) = P(z > \frac{730 - 716}{\sqrt{55}})$	M1 A1	
		= P(z > 1.89)		
		= 0.0294	A1	(5)
			(10 m	arks)

awrt = "anything which rounds to..."

PROVISIONAL MARK SCHEME

Question Number		Marks	
4. (<i>c</i>		M1	
	$\Sigma d^2 = 70$	M1 A1	
	$r_s = 1 - \frac{6 \times 70}{10 \times 99} = 0.576$	M1 A1 (5)	
(1) $H_0: \rho = 0; H_1: \rho \neq 0$	B1 B1	
	$n = 10 \Rightarrow$ critical value = 0.5636	B1	
	0.576 is in the critical region	M1	
	Evidence of correlation between performance and dedication.	A1ft (5)	
(0	 Likely to be an element of judgement in grading. Dedication unlikely to be normally distributed. 	B1 (1)	
		(11 marks)	
5.	Expected Frequency Male: 50.98 27.85 39.17 Female: 57.02 31.15 48.83	M1 A1 A1	
	H ₀ : no association between gender and facility	B1	
	H ₁ : Association between gender and facility	B1	
	$\Sigma \frac{(O-E)^2}{E} = \frac{(50.98 - 40)^2}{50.98} + \frac{(57.02 - 68)^2}{57.02} + \dots + \frac{(43.83 - 31)^2}{43.83}$	M1 A1	
	= 12.7	A1	
	$\alpha = 0.05, \underline{\nu = 2} \Rightarrow \text{CR: } \chi^2 > \underline{5.991}$	<u>B1 B1</u>	
	Evidence of association between gender and facility	A1ft (11)	
		(11 marks)	
ft = follow	v through mark		

ft = follow through mark

Question Number	Scheme	Marks
6. (<i>a</i>)	R = 43.76; S = 54.68; T = 43.76 using tables	M1 A1; B1 B1
	(OR $R = 43.75$; $S = 54.69$; $T = 43.75$ using calculator)	(4)
(b)	H ₀ : Binomial model with $n = 8$, $p = 0.5$ is suitable H ₁ : Binomial model with $n = 8$, $p = 0.5$ is not suitable	B1 (both)
	Amalgamation of data	M1
	$\Sigma \frac{(O-E)^2}{E} = 5.69 \text{ (awrt)}$	M1 A1
	$\alpha = 0.05, \underline{\nu = 6} \Rightarrow \text{CR: } \chi^2 > \underline{12.592}$	<u>B1 B1</u>
	Since 5.69 is not in the critical region there is no evidence to reject H ₀ . The binomial model with $n = 8$ and $p = 0.5$ is a suitable model.	A1ft (7)
(C)	Apart from the expected values and $\sum \frac{(O-E)^2}{E}$ being different, the	B1 (1)
	degrees of freedom would have been reduced by 1 ($\nu = 5$).	(12 marks)
7. (<i>a</i>)	Cooling by subtracting 500 for each observation gives	
	Mean = $500 + \frac{22}{10} = 502.2$	M1 A1
	Variance = $\frac{1}{9} \{ 288 - \frac{22^2}{10} \} = 26.622$	M1 A1 A1 (5)
(b)	Limits are $502.2 \pm 1.6449 \times 5.0$	M1
	(493.98, 510.42) [accept (494, 510)]	A1 (2)
(C)	95 % confidence limits are	
	$502.2 \pm 1.96 imes rac{5.0}{\sqrt{10}}$	M1 A1ft B1 (for 1.96)
	(499, 505)	A1 A1 (5)
(<i>d</i>)	H ₀ : $\mu = 500$ H ₁ : $\mu > 500$	B1 (both)
	$\alpha = 0.05 \Longrightarrow \text{CR: } z > 2.3263$	B1
		D1
	$z = \frac{503.9 - 500}{5.0 / \sqrt{15}} = 1.47$	M1 A1
	1.47 is not in the critical region \Rightarrow no evidence to reject H ₀ ; no evidence to suggest mean is greater than 500g	A1 ft (5)
		(17 marks)

_

Question number	Scheme	Marks	
1. (a)	Take a (simple) random sample from (mutually exclusive) groups of the population1g/1hSample sizes within strata in strict proportion to numbers in each strata in the populationAdvantage:	B1 B1	
	More accurate estimate of variance of population meanIndividual estimates for strata availableAny oneDisadvantage:Individual estimates	B1	
(b)	Difficult if strata are largeDefinition of strata problematic (may overlap)Any one	B1	(4)
(0)	Non-random sampling from groups of the population Advantage: Representative sample can be achieved with small sample size	B1 B1 dep	
	Cheap (costs kept to a minimum)Any one (not quick)Administration relatively easyAny one (not quick) Disadvantage Not possible to estimate sampling errors due to lack of randomnessJudgment of interviewer can affect choice of sample – bias OKNon-response not recorded	B1	
	Difficulties of defining controls e.g. social class Any one	B1	(4)
2. (a)	X ~ N (124, 20 ²) or \overline{X} ~ (124, $\frac{20^2}{30}$ or assume σ^2 estimated by s ² or CLT, vals.	B1,B1	
	$\overline{x} \pm 2.5758 \frac{\sigma}{\sqrt{n}} = 124 \pm 2.5758 \frac{20}{\sqrt{30}}$ 2.5758, formula + attempt, all correct&2.58,2.576 = 124 \pm 9.405	B1M1A1	
(b)	= (115,133)3 s140 is not in confidence interval Underweight apples chosen or Sample may not be representative/may be biasedAny on	f A1 M1 e A1∫	(6)
		8	(2)

Question number		Schen	ne			Marks	
3. (a)	E(X-Y)=20-10=10			Requ	iire minus, 10	M1A1	(2)
(b)	Var(X-Y)=5+4=9			Re	equire plus, 9	M1A1	(2)
(c)	X-Y 🗆 N(10,9) P(13 <x-y<< td=""><td>= P(Z < 2) - H</td><td>$\frac{0}{2}$) - P(Z<$\frac{13-10}{3}$)</td><td></td><td>Implied Subtract Standardise 2&1 0.1359</td><td>B1 M1 M1 A1 A1 9</td><td>(5)</td></x-y<<>	= P(Z < 2) - H	$\frac{0}{2}$) - P(Z< $\frac{13-10}{3}$)		Implied Subtract Standardise 2&1 0.1359	B1 M1 M1 A1 A1 9	(5)
4.	H ₀ : Taking drug and o H ₁ : Taking drug and o Drug Dummy	-	-		both All totals $E = \frac{RT \times CT}{GT}$	B1 B1 B1 M1A1A	L
	$ \begin{array}{c} O \\ 34 \\ 66 \\ 45 \\ 55 \end{array} $ $ \sum \frac{(O-E)^2}{E} = 2.53 \text{ (I} \\ v = 1, \chi_1^2 (5\%) = 3.8 \\ \text{No reason to believe th} \end{array} $	E 39.5 60.5 39.5 60.5 NB with Yates 2.09 41 > 2.53	$\frac{(O-E)^2}{E} \\ 0.766 \\ 0.5 \\ 0.765 \\ 0.$	l, awrt 0.766 & 0.5	twice, awrt 2.5 1, 3.841	3 M1A1A1 1 B1,B1 A1∫ 11	

Question number	Scheme								Marks		
5	μ_a and μ_b are mean	n weight o	of populat	tion after	and befor	e closure	respective	ely.		B1	
	$ \begin{aligned} \mathbf{H}_0: \ \boldsymbol{\mu}_b &= \boldsymbol{\mu}_a \\ \mathbf{H}_1: \boldsymbol{\mu}_b &> \boldsymbol{\mu}_a \end{aligned} $									B1B1	
	$z = \frac{10 - 8}{\sqrt{\frac{2.64^2}{100} + \frac{1.92}{120}}}$	$\overline{\frac{1}{4^2}}$				Fract	ion, deno	om Ok a	lone	M1A1 M1A1	
	$z = \frac{2}{\sqrt{0.1011}} = 6.2$	29							awrt 6.29	A1	
	Critical region is $z \ge$	1.6449	, 6.29>	1.6449 c	or in critic	al region	or Reject	H_0	1.6449	B1, M1	
	(or $P(Z \ge 6.29) =$	0, 0 < 0.	05 or z i	n critical	region or	Reject I	H ₀ B1M	1)			
	There is evidence that	t closing	the factor	y has red	uced mean	n river po	llution			A1∫	(11)
										11	(11)
6 (a)											
	A 2 B 3	5 2	3	75	8 7	1 4	4	6 8		d M1	
	d 1	3	3	2	1	3	3	2		$\sum d^2 M$	1A1
	d^2 1	9	9	4	1	9	9	4	46		
	$r_s = 1 - \frac{6 \times 46}{8 \times 63}$									M1A1∫	
	$r_{s} = 0.452$								0.452	A1	
(b)	$H_0: \rho = 0, H_1: \rho$									B1B1	(6)
	critical values are			,	·····	1	11		381(0.6429		
	0.452<0.7381 (0.452 No agreement betwee			g or Insur	ficient evi	dence to i	reject Π_0	Cont	t	M1 A1∫	
	No agreement betwee	en the two	Judges.					Com	ext	AIJ	(5)
											11

Question number				ł	Scheme	•			М	arks	
7 (a)	•	$0.3 \times 50 + 0.2$ = $(0.3 \times 50^2 + 0.3)$				$-18^{2} =$	= 448			M1A1 M1A1	
(b)		(50,50) (10,2) (2,10) (10,10) (50,10) (10,50) (2,2) (50,2) (2,50)	O		(50,50) (10,2) (10,10) (50,10) (2,2) (50,2)	withou	it ordere	-	her, -1 each missing pair	B2	(4)
(c)		\overline{x} P($\overline{X} = \overline{x}$)	2 0.25	6	10 0.04	26 0.3	30 0.12	50 0.09			(2)
						A	All mean	ns, prob	babs muiltiplied, -1 each error	B1 M 2	1 A2 (4)
(d)	P(2:	$\leq \overline{X} < 7) = 0.2$	25 + 0.2	2 = 0.4	5			Proba	bilities of 2 and 6 added, 0.45	M1 A1∫	
(e)	Var($25 + 6^2$	×0.2+	⊦ −1			$x^2 P(X$	xP(X = x) from table, 18 X = x) - (theirs) ² , 224 M1A1	M1 A1	(2)
	So E	$(\overline{X}) = 18 = \mu$	and V	$\operatorname{Var}(\overline{X})$) = 224	$=\frac{1}{2}\sigma$	² as re	quired.		A1	(5)
										17	

Question Number	Scheme		Marks	
1a)	Allocate a number between 1 and N (or equiv) to each pupil.		M1	
	Use <u>random number tables</u> , <u>computer or calculator</u> to select 15 <u>differen</u> numbers between 1 and 120 (or equiv).	<u>nt</u>	B1	
	Pupils corresponding to these numbers become the sample.		B1	(3)
(b)	Allocate numbers $1 - 64$ to girls and $1 - 56$ to boys. Idea of different s boys and girls	ets for	M1	
	Select $\frac{64}{120} \times 15 = 8$ random numbers between 1 – 64 for girls	ttempt find no	M1	
	Select 7 random numbers between 1 – 56 for boys.	Both 7 and 8	A1	(3)
2a)	H ₀ : $\rho = 0$; H ₁ : $\rho > 0$ ρ	both and	B1 B1	
	5% CV – PMCC <u>0.6215</u>		M1	
	0.572 < 0.6215 / not in critical region / not significant		A1	
	No evidence of <u>positive</u> correlation		B1	
	Spearman <u>0.6429</u>		B1	(6)
(b)	Evidence of <u>positive</u> correlation No evidence to suggest that as <u>Statistics marks increased</u> <u>Geography marks increased</u> .	Context and not correlation	B1 B1	(0)
	Evidence that students <u>ranked highly in Statistics were also</u> <u>ranked highly in Geography</u>	ranked		(2)

Question Number	Scheme	Marks
3a)	$H_0: \ \mu_A = \mu_B \ ; \ H_1: \ \mu_B > \mu_A $ both and μ	B1
	$z = \pm \frac{249 - 251}{\sqrt{\frac{2.5^2}{10} + \frac{2.3^2}{15}}}$ 249,251 accept $\sqrt{\frac{2.5}{10} + \frac{2.3^2}{15}} \text{ for M}$	M1 A1
	$= \pm 2.0227$ awrt ± 2.02	A1
	$\begin{array}{ll} CV = \pm 1.6449 \\ \text{or} P(Z \geq 2.02) = 0.0212 - 0.0217, \\ \text{or} P(Z \leqslant 2.02) = 0.9788 - 0.9783 \end{array}$	B1
	-2.0227 < -1.6449 or 2.0227 > 1.6449 , or $0.0212 - 0.0217 < 0.05$ comparison and consistency needed or $0.9788 - 0.9783 > 0.95$	M1
	There is evidence that the <u>mean amount of coffee</u> dispensed by B <u>is greater</u> than A. context	A1√ (7)
b)	Machine B amounts are normally distributed.	B1 (1)

Question Number	Scheme	Marks	
4a)	$\bar{x} = 75.3$	B1	
	$s^2 = \frac{1}{9} \left\{ 57455 - \frac{753^2}{10} \right\}$	M1	
	$= 83.78^{\circ}, 83\frac{71}{90}, 83.8$ awrt 83.8	A1	(3)
	1.96	B1	
b)	74.8 $\pm 1.96\sqrt{\frac{84.6}{100}}$ any z value, may use 75.3,83.8 for M	M1 A1 $$ on z only	
	(73.0, 76.6) awrt 73.0,76.6	A1, A1	
			(5)
c)	Journey times independent		
	Sample large enough to use central limit theorem any 2	B1,B1	
	Same distribution / population		(2)

Question Number	Scheme	Marks
5.	Never Sometimes Regularly Totals	M1 convert % to freq A1 (26, 91, 30, 132) A1 (143, 78)
	Males 30 132 78 240	B1 B1
	Females 26 143 91 260	M1 A1 at least 3sf
	56 275 169 500	B1; B1√
	H ₀ : No association (independent) between gender and exercise H1 : association (not independent) between gender and exercise	M1 A1
	Expected Values	A1√ (12)
	Never Sometimes Regularly Totals	
	Males 26.88 132 81.12 240	
	Females 29.12 143	

EDEXCEL STATISTICS S3 (6685) - JUNE 2004	4 PROVISIO	NAL MARK SCHEME
	87.88	
	260	
	56	
	275	
	169	
	500	
$\alpha = 0.05$ <u>$v = 2$</u> ; CV $\chi^2 > 5.991$		
$(Q-E)^2$ Q^2		
$\Sigma \frac{(O-E)^2}{E} OR \Sigma \frac{O^2}{E} - N = 0.9271$	answers in range 0.90 – 0.95	
Not in critical region – no evidence of	fassociation between	
gender and exercise		
קבוועבו מוע בגבונוגב		

Question Number		Scheme		Marks
6a)	<i>X</i> ~ B(3,1/6)		bino 3, 1/6	B1 B1 (2)
b)	X Prob	Expected freq	prob – must show working and use B(3,p) or may be implied by correct answer	M1
	$0 \qquad \left(\frac{5}{6}\right)^3$	144.68	expected	M1
	1 $3 \times \left(\frac{5}{6}\right)^2 \left(\frac{1}{6}\right)$	86.81		
	$2 \qquad 3 \times \left(\frac{5}{6}\right) \left(\frac{1}{6}\right)^2$	17.36	awrt 145,86.8,17.4,1.15/1.16	B2 (-1 ee)
	$3 \qquad \qquad \left(\frac{1}{6}\right)^3$	1.15 (1.16)		
	H ₀ : Binomial model is H ₁ : Binomial model is		both, no ditto	B1
	Amalgamate 3 with and	other group		M1
	$\alpha = 0.01 v = 2$; CR χ^2	² > <u>9.210</u>		B1 ; B1√
	$\Sigma \frac{(O-E)^2}{E} OR \Sigma \frac{O^2}{E} - R$ answers in range 8.67 - 8.70 or	N = 8.6894		M1 A1
	Evidence that Binomial	is a good model.		A1√ (11)

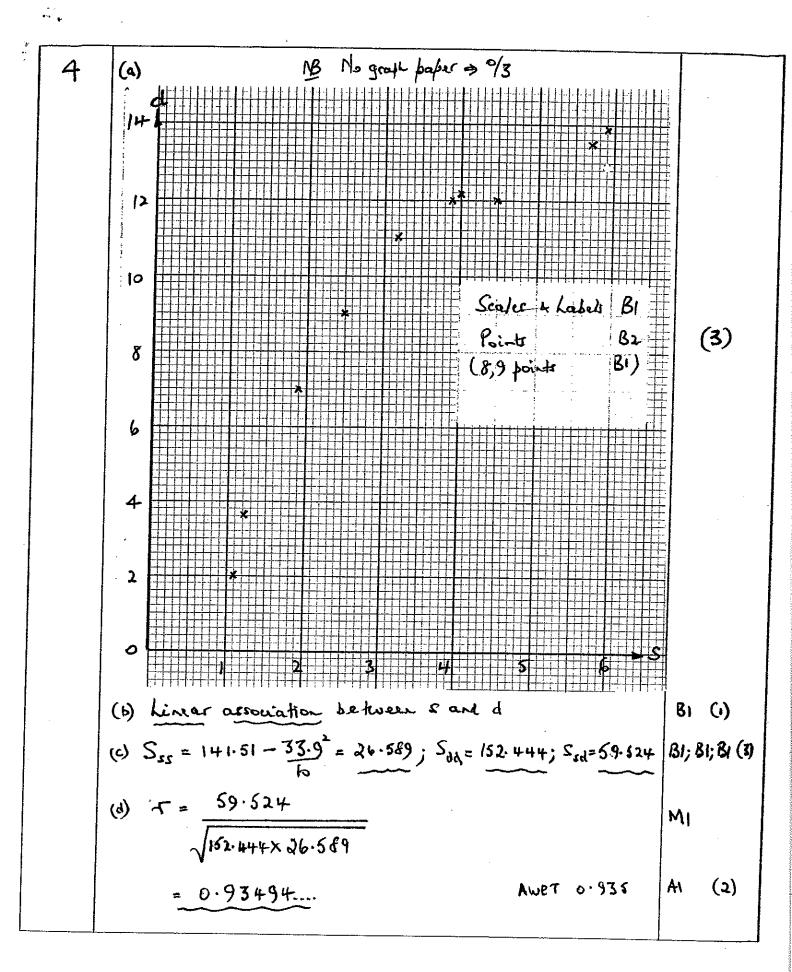
Question Number	Scheme	Marks	
6.c)	Estimate p	B1	
,	Degrees of freedom reduced by 1	B1	
	Special case		(2)
	Use of B(3,0.192) in part (b)		
	Ose Of B(3,0.192) in part (0)		
	Expected frequencies		
	131.8785	M1	
	94.01242	M1	
	22.339		
	1.769	B0	
	H_0 : Binomial model is a good fit both, no ditto		
	H ₁ : Binomial model is not a good fit	B1	
	Amalgamate 3 with another group	N/4	
	i indiganate o truit another group	M1	
	$\alpha = 0.01 v = 1$; CR $\chi^2 > 6.635$	B1 ; B1√	
	$(O-E)^2 = O^2$		
	$\Sigma \frac{(O-E)^2}{E} OR \Sigma \frac{O^2}{E} - N \text{in range 5.45 -5.50}$	M1 A1	
	Evidence that Binomial is a good model.	A1√	
		ATV	(11)
			(11)

Question Number	Scheme	Marks
7a)	E(D) = E(A) - 3E(B) + 4E(C)	M1 A1
	= 20 Var(D) = Var(A) + 9Var(B) + 16Var(C) Use of a ² Var X Adding 3 Var ie 4 +	M1 M1
	=341	A1
	$P(D < 44) = P\left(z < \frac{44 - 20}{\sqrt{341}}\right)$ standardising their mean and sd	M1, A1√
	= P (z < 1.30) awrt 1.30	A1
b)	= <u>0.9032</u>	A1 (9)
	E(X) = 20	B1
	Var(X) = Var(A) + 3Var(B) + 16 Var(C) + and 16 3 Var(B)	M1 M1
	= 287	A1
	P (X >0) = P $\left(z > \frac{-20}{\sqrt{287}}\right)$ standardising their mean and sd	M1
	= P (z > -1.18) awrt -1.18	A1
	= 0.8810	A1 (7)

publication.

e .

June 2005 6685 Statistics S3 Mark Scheme


Edexcel

Marks	ŀ	Scheme	Question Number
81 (2)	81;	(B) Population divides into motually exclusive; groups (b) Advantages (c) Advantages (c) distinct (c) advantages	I.
	81	- administration is relatively easy	
(٤)	81	Disadvantages - non-random so not possible to estimate sampling errors - subject to possible interviewer bior Any ONE - non-response not recorded	
BI	B1; I	X~H(10,32) :: X~H(10, %) Can be 10; % B	a.
ΑI	MI /		
j<0.5)	a Mi ($= P(-2,236 < 2 < 0)$ $= \underline{F}(0) - \{1 - \underline{F}(2,24)\}$	
(6)	A١	= 0.4.875	

6685 Statistics S3 June 2005 Advanced Subsidiary/Advanced Level in GCE Mathematics

Question Scheme Marks Number Spray with READYE 3. Total direased the action Chrical branches True died 5(7) $\mathcal{C}(1)$ 10(7) 21 within I year Survived 5 (7) 7(7) 9(7) 21 1-4 years Survivid 7(6) 6 (6) 5 (6) 18 > 4year 20 Totals 20 60 20 RTXCT M1 GT ж 6x7 A١ 116 Ho: Treatment & Survival are independent (not associated) BI both H1: Treatment & Lurviral are not independent (associated) N= 0.05 $\lambda = (3-1) \times (3-1) = 4$ 81 81 1 CR: X > 9.488 $\sum \left(\frac{0-E}{E} \right)^{2} = \frac{9}{7} + \frac{4}{7} + \frac{1}{7} + \frac{4}{7} + \frac{4}{7} + \frac{4}{7} + 0 + \frac{1}{6} + \frac{1}$ M) 4 A١ A = 3.47619 Since 3.47619... Is Not in the critical region (ie 29.4 PF) there is insofficient evidence to riject Ho. These is no evidence of association between freatment Comparison MI and length of survival. M √ (1) Conduction

.

6. (a) Let X abreaut repair thue

$$\frac{1}{2} \sum_{k=1}^{\infty} \frac{1+x}{35} = \frac{1+x}{5} = \frac{2}{6} \frac{2}{7}$$

$$\sum_{k=1}^{\infty} \frac{1+x}{35} = \frac{1+x}{5} = \frac{2}{6} \frac{2}{7}$$

$$\frac{1}{2} \sum_{k=1}^{\infty} \frac{1+x}{4+2575} = \frac{1}{5} + \frac{1+x}{5} = \frac{2}{5} + \frac{1}{5}$$

$$\frac{1}{1} \sum_{k=1}^{\infty} \frac{1+x}{5} = \frac{1}{5} + \frac{1+x}{5} = \frac{1}{5} + \frac{1}{5}$$

$$\frac{1}{1} \sum_{k=1}^{\infty} \frac{1}{5} + \frac{1}{5} + \frac{1}{5} + \frac{1}{5} + \frac{1}{5} + \frac{1}{5} + \frac{1}{5}$$

$$\frac{1}{1} \sum_{k=1}^{\infty} \frac{1}{1} + \frac{1}{1}$$

.

() Let W= C1+...+ C24+ B .: E(W) = 24×350+100 = 8500 BI $Var(w) = 24x8 + 2^2 = 196$ Bt $P(8510 \le W \le 8520) = P(\frac{8510 - 8500}{\sqrt{196}} \le 2 \le \frac{8520 - 8500}{\sqrt{196}})$ M١ = P (0.71 ... 2 Z + 1.43) AWRT Ay' At/ 0.9236 - 0.7611 (6) AL 0.161 - 0.163 0.1625 BI () All random variables are independent. (\mathbf{q}) HE frequents 12/06/05

le 1.

Question Number	Scheme		Marks
Number 1.	Total in School = $(15 \times 30) + 150 = 600$ random sample of $\frac{30}{600} \times 40$ (Use of $\frac{40}{their 600}$) = 2 from each of the 15 classes random sample of $\frac{15}{600} \times 40$ Either = 10 from sixth form; Label the boys in each class from 1 – 15 and the girls from 1 – 15. use random numbers to select 1 girl and 1 boy Label the boys in the sixth form from 1 – 75 and the girls from 1 – 75. use random numbers to select <u>5</u> different boys and 5 different girls.	B1 M1 A1 B1 B1 B1	(7)

Question Number	Scheme		Ma	rks
2. (a)	E(R) = 20 + 10 = 30		B1	(1)
(b)	Var(R) = 4 + 0.84, = 4.84		M1, A1	(2)
(c)	R ~ N(30, 4.84)	(Use of normal with their (a),(b))	B1ft	(2)
	$P(28.9 < R < 32.64) = P(R < 32.64) - P(R < 28.9)$ $= P\left(Z < \frac{32.64 - 30}{2.2}\right) - P\left(Z < \frac{28.9 - 30}{2.2}\right)$	Stand their σ and μ	M1	
	= P(Z < 1.2) - P(Z < - 0.5)		A1, A1	
	= 0.8849 - (1 - 0.6915)	Correct area	M1	
	= 0.8849 - 0. 3085 = 0.5764	(accept AWRT 0.576)	A1	(6)
				9

3. ((a)	$\widehat{\mu} = \frac{82 + 98 + 140 + 110 + 90 + 125 + 150 + 130 + 70 + 110}{100}$	M1	
		10 = 110.5	A1	
		$\hat{\sigma}^2 = \frac{1}{9} (128153 - 10 \times 110.5^2)$ 128153	B1	
		= 672.28 (AWRT 672)	M1 A1	(5)
(b)		95% confidence limits are (condone use of 5 instead of 25) (for 1.96)	M1 B1	
		110.5 $\pm 1.96 \times \frac{25}{\sqrt{10}}$	A1√	
		95% conf. lim. = AWRT(95, 126)	A1 A1	(5)
(c)		Number of intervals = $\frac{95}{100} \times 15$	M1	
		= 14.25 (Allow 14 or 14.3 if method is clear)	A1	(2)
				12

		n between gend		nnce	B1
H_1 : gender	er and ac	cceptance are as	sociated		
	Accept	t Not accep	ot Total		
Males	170 (1				N/1 A
Females				Expected	M1 A
Totals	280 (2 450		700	Values	
<i>O</i> 170 110 280 140		E 180 100 270 150	$\frac{(O-E)^2}{E} \\ 0.5556 \\ 1.0000 \\ 0.3704 \\ 0.6667 \\ \end{array}$		
		9 (Yates' 2.34)		(Condone use of Yates')	M1 A
v = 1; (5%)) = 3.84	1			B1; B
There is no	o associa	re is insufficient ation between a		eject Ho er and their acceptance (of the offer	M1 A1√
	o associa				
There is no	o associa				
There is no	o associa				
There is no	o associa				
There is no	o associa				
There is no	o associa				
There is no	o associa				
There is no	o associa				
There is no	o associa				
There is no	o associa				
There is no	o associa				
There is no	o associa				
There is no	o associa				
There is no	o associa				

5. (a)	μ_b = mean mark of boys, μ_g = mean mark of girls.			
	$ \begin{aligned} H_0: \mu_b &= \mu_g \\ H_1: \mu_b &\neq \mu_g \end{aligned} $	both	B1	
	$z = \frac{53 - 50}{\sqrt{\frac{144}{80} + \frac{144}{80}}}$		M1 A1	
	= 1.58 Critical region $z \ge 1.96$ 1.58 < 1.96 insufficient evidence to reject Ho. No diff. between mean scores of boys and girls.		A1 B1 M1 A1	(7)
(b)	$ \begin{array}{l} \mathrm{H}_{0}: \mu_{b} \ = \mu_{g} \\ \mathrm{H}_{1}: \mu_{b} \ < \mu_{g} \end{array} $		B1	
	$z = -\frac{62 - 59}{\sqrt{\frac{36}{80} + \frac{36}{80}}}$		M1	
	= 3.16		A1	
	Critical region $z \ge 1.6449$ (accept 1.645)		B1	
	$3.16 > 1.6449$ sufficient evidence to reject $H_{0.}$ the mean mark for boys is less than the mean mark of the girls.		A1	
				(5)
(c)	Girls have improved more than boys or girls performed better than boys after 1 year		B1	(1)
				13

6. (a)	r = 27.07, s = 18.04, t = 0.11 using tables or 0.12 using totals	M1 A1 B1 B1 ft	
(b)	Ho : A Poisson model Po(2) is a suitable model.	B1	(4)
	H ₁ : A Poisson model Po(2) is not a suitable model. Amalgamate data $(Q - E)^2$	M1	
	$\sum \frac{(O-E)^2}{E} = 3.28 \text{ (awrt)}$	M1 A1 B1	
	v = 6 - 1 = 5 $\chi_5^2 (5\%) = 11.070$ (follow through their degrees of freedom)	B1ft	
	3.25 < 11.070 There is insufficient evidence to reject H_0 , <u>Po(2) is a suitable model.</u>	A1ft	(7)
(c)	The expected values, and hence $\sum \frac{(O-E)^2}{E}$ would be different,	B1 B1	(2)
	and the degrees of freedom would be 1 less.		13

								B1	
	20-29	30-39	40-49	50-59	60-69	70+			
Rank x	5	6	4	3	1	2	_	M1 A1	
Rank y		5	4	1	3	2	_		
$\frac{d}{d}$	1	1	0	2	2 4	0	-	dM1 (dep	
d^2		I	U	4	4	0		on rankir attempt)	ıg
$\sum d^2 = 1$	10					(follow th	nrough their rankings)	A1 ft	
$r_{s} = 1$	$\frac{6\sum d^2}{n(n^2-1)} =$	$1 - \frac{60}{1} =$	= 0.714			$\left(\frac{5}{7} \text{ or } a\right)$	awrt 0.714)	M1 A1	
s n	$n(n^2-1)$	210				(7)		
H₀: <i>ρ</i> =0								B1	
$I_1: \rho \neq 0$	(or ρ > 0)							B1	
$r = 6 \Longrightarrow 5$	% critical va	lue = 0.885	57 (or 0.828	6)				B1√	
.714 < 0.8 lo evidenc	3857 ce to reject l	H.:						M1	
No evidenc	ce of correla	tion betwe	en deaths fi	rom pneum	oconiosis ai	nd lung can	cer.	A1	
									12
									12
									12
									12
									12
									12
									12
									12
									12
									12
									12
									12

June 2006 6691 Statistics S3 Mark Scheme

Question Number	Scheme	Marks
1 (a)	Advantages: - does not require the existance of appopulation list - field work can be dore quickly as representative Sangle can be achieved with a smill sample size - costs kept to a minimum (cheaply) - administration relatively every any one	BI
	- non-random process	B) (2)
(७)	Advantages: - romdon process to possible to estimate sampling errors - free from biers	81
	Disadvantages: - not suitable when sample size is longe - sampling from required which may half exist or may be difficult to wondomat for a long pulphon. any se	B1 (2)

Question Number	Scheme			
2 (a)	$X \sim N(90, \frac{5^2}{100})$ ie. $N_9(90, 0.25)$	MLAI		
	Application of central limit theorem as (cample large)	B1 (3		
(v)	$P(\overline{\chi} \gg 91) = 1 - I(2 \leq \frac{91-90}{0.5})$ Stand.	MIAI		
	$= 1 - f(z z_2)$			
	= 1-0.9772			
	= 0.0228 aurt 0.0228	A1 (3)		
		Tork 6		
3 (a)	H-: MA=MB, H. MA=MB M., M2OK both	B 1		
	$5 = \sqrt{\frac{47^2}{79} + \frac{23^2}{99}} = \sqrt{37.43492.2}$	MIAI		
	Test statistic is + 198-201 = to 4903 aurt 0.89	MIAI		
	cv = (+) 1.96 B1 Probab cv 0.025	BI		
	Insufficient endence to reject No, no significant difference between the mean chilesterol	AIS		
	content of the two samples. (require correct comparison for Ft) contract required.	(7)		
(5)	- require legg from each of 70 chickens of diet A			
	- no dischens in common between the two samples			
	to ensure independence			
	- not same chickens on dict A and diet is become			
	If it were we read to do a praired analysis.	B1, B1		
	Any I	(2)		
		TOTAL 9		

·									
	4.	Rank:			_				
ŀ		Shop	Distance	Price	J	d 2			
		A	١	٩	8	64			
		B	2	7	5	25			
		c	3	10	7	49			
		D	4	6	2	4-			
		E	5	4-	۱	ł			
		F	6	8	2_	4			
		૬	7	2	5	25	rawking	MI	
		н	8	۱,	7	49			
		I	٩	5	4	16			
		ত	-	3	7	49		· ·.	
		Reade racking a	yince, Edi	2 = 44 Lairs				MIAI	
	(4)	rs = -	6×286	= -0.	73 5-1	- 0 - 0 7	33	MIAI	
]=(II)			aurt or 0.733	forEl ^{e=44}	(5)	
	(ه)	H. p=0						BI	
		N. : p<0		(H1:020	if renavce	reaking)	B)	
		(V = -0.	5636		0-5636			BI	
		Reject Ho,	evidence	there is	a signi	ficult			
		reactive come	lation bet	men the	price 1	an	· .		
		ice crean and	the disto	nee from c	trust a	Marino	• •	BI	
		(Ice cream of	gt cheaper	r further	from the	tomat	attention)	L4)	
		(-cv from cor	ret table n	yuied)	(positivi	n context	> .	Total 9	

$$M = \text{wt of male worker} \qquad M \sim N(78.5, 12.6^2)$$

$$F = \text{wt of female worker} \qquad F \sim N(.62.0, 9.8^2)$$

$$F = wt of Female worker F ~ N(.62-0, 9-8^{L})$$
(a) $W = M_{1+\dots+}M_7 + F_{1+\dots+}F_8$
 $E(w) = 7x 78.5 + 8x 62.0 = 1045.50$ (050 MIAI
 $Var(w) = .7x 12.6^2 + 8x 9.8^2 = 1879.64$ IFF0 MIAI
(4)

(c)
$$P(W > 1090) = P(Z > \frac{1090 - 1045 \cdot 5}{\sqrt{1879 \cdot 64}})$$
 HI

$$= f(z) 1.03 \qquad \text{Al} \qquad 1-H_1$$

= 1 - 0.8485
= 0-1515
Awar(0.152)
Awar(0.152)
(4)

· . 5.

8 (a)	B,(5,0.5)	M [A] (2)
(4)	Ho: B(5,0.5) is a suitable model (good fit) Hi: B(5,0.5) is not a suitable model (not a good fit) Nfor \$= 0.466.	(2) BI√
	No. of 0 1 2 3 4 5 teads 100 Max) Expected 3.125 15.625 31.25 31.25 15.625 3.125 For Bin, 100 met 100 met Actual 6 18 29 34 10 3 = Al All corret = Al	MIAIAI
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
-	4 or 5 All want 2st	MIAL
	Insufficient evidence to regent Ho B(5,05) is a suitable model.	BIJBI√ AI√ (1))
	huyrauped gives a wort 5.44, W=5, 42=9-236	TorAL 13

Mark Scheme (Results) Summer 2007

GCE

GCE Mathematics

Statistics S3 (6691)

Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH

June 2007 6691 Statistics S3 Mark Scheme

Question number	Scheme	Marks
1. (a)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1A1
	$\sum d^2 = 32$	M1A1
	$r_S = 1 - \frac{6 \times 32}{8 \times (8^2 - 1)}$	M1
	$=\frac{13}{21}$ or AWRT 0.619	A1 (6)
(b)	$H_0: \rho = 0$ $H_1: \rho > 0$ $(\rho_s \text{ is OK})$ both r_s 1 tail 5% critical value is 0.6429(Independent of their H1) $0.619 < 0.6429$ or not significantSo insufficient evidence of a positive correlation between judges	B1 B1 (<u>+</u> is OK) M1
	\underline{Or} competitor <u>is</u> justified	A1f.t. (4) 10
(a)	1 st M1 for attempting to rank both <i>P</i> and <i>Q</i> . 1 st A1 for both correct (could be reversed) 2 nd M1 for attempting d^2 2 nd A1 for $\sum d^2 = 32$. 3 rd M1 for correct use of formula for r_S	
(b)	M1 for a correct comparison or statement about significance (o.e.) Follow through their r_{0} provided $0 < r_{0} < 1$	
	Follow through their r_s provided $0 < r_s < 1$ A1f.t. for a conclusion in context. Must mention judges or marks or competitor. If they use correlation they must say it is positive. Follow through their positive r_s with their positive c.v. and ignore hypothe So $r_s = 0.667$ they could say competitor's claim is not justified etc.	eses.
S.C.	<u>No ranking</u> Typical answer (-3.82) can get mark for use of r_s formula and hypothe (a) M0A0M0A0M1A0 (b) B1B1M0A0	ses in (b) only

Question number	Scheme	Marks				
2. (a)	H_0 : Maths grades are independent of English grades or No association					
	H_1 : Maths and English grades are dependent <u>or</u> There is an association	B1				
	Expected Frequencies e.g. $\frac{60 \times 40}{120} = 20$ 20 27.5 12.5 20 27.5 12.5	M1 A1				
	$\sum \frac{(O-E)^2}{E} = 2 \times \left(\frac{5^2}{20} + \frac{2.5^2}{27.5} + \frac{2.5^2}{12.5}\right), = 3.9545$ AWRT <u>3.95</u> or <u>3.955</u>	M1, A1				
	$v = (3-1)(2-1) = 2;$ $\chi_2^2(10\%) \text{ c.v.} = 4.605$	B1; B1				
	3.95< 4.605 or not significant or do not reject H_0 (allow reject H_1)	M1				
	Insufficient evidence of an association between English and maths gradesorthere is support for the Director's belieforStudent's grades in maths and English are independent	A1 (9)				
(b)	May have some expected frequencies <5 (and hence need to pool rows/cols)	B1 (1) 10				
(a)	1 st B1 for both hypotheses in terms of independence or association and in context.					
	Must mention Maths and English in at least one of the hypotheses.					
	"relationship" or "correlation" or "connection" or "link" is B0					
	1 st M1 for some correct calculation seen					
	1 st A1 for all expected frequencies correct. Accept answers without formula seen					
	2 nd M1 for some evidence seen of attempt to calculate test statistic.					
	At least one correct term seen. Follow through their expected frequencies.					
	2 nd A1 for AWRT 3.95. Answers only please escalate!					
	3 rd M1 for correct comparison or statement – may be implied by correct conclusio	n.				
	3 rd A1 for conclusion in context using "association" or "independence" in connect	tion with grades.				
	Don't insist on seeing English or maths mentioned here.					
	Use ISW for comments if a false statement and correct statement are seen.					
(b)	B1 If they just say expected frequencies are "small" they must go onto mention	n need to pool.				

Question number	Scheme	Marks
3.	$H_0: \mu = 18, \qquad H_1: \mu < 18$	B1, B1
	$z = \frac{16.5 - 18}{\sqrt[3]{\sqrt{15}}} = ,-1.9364$ AWRT - 1.94	M1, A1
	5% one tail c.v. is $z = (-) 1.6449$ or probability (AWRT 0.026) (<u>+</u>) 1.6449	B1
	- $1.94 < -1.6449$ <u>or</u> significant <u>or</u> reject H ₀ <u>or</u> in critical region	M1
	There is evidence that the (mean) time to complete the puzzles has reduced	
	Or Robert is getting faster (at doing the puzzles)	A1f.t. 7
	$1^{\text{st}} \& 2^{\text{nd}} B1 \text{must see} \ \text{ and } 18$,
	1 st M1 for attempting test statistic, allow <u>+</u> . Or attempt at critical value for \overline{X} : μ 1 st A1 for AWRT – 1.94. Allow use of $ z = +1.94$ to score M1A1. Or critical value	V15
	3^{rd} B1 for AWRT 0.026 (i.e. correct probability only) or <u>+</u> 1.6449. (May be seen	
	2 nd M1 for correct comparison or statement relating their test statistic and 1.6449 c and 0.05. Ignore their hypotheses if any or assume they were correct.	or their probability
	2 nd A1f.t. for conclusion in context which refers to "speed" or "time". Depends or	nly on previous M

Question number	Scheme	Marks			
4. (a)	$\frac{0 \times 17 + 1 \times 31 + \dots}{17 + 31 + \dots} = \left(\frac{200}{100} = 2\right), \qquad \hat{p} = \frac{2}{20} = \underbrace{0.1}_{\text{(Accept } 20)} (\text{Accept } \frac{2}{20} \text{ or } 2 \text{ per } 20)$	M1, A1 (2)			
(b)	e.g. $r = 100 \times {\binom{20}{2}} (0.1)^2 (0.9)^{18}$	M1			
	r = 28.5, s = AWRT 9	A1, A1 (3)			
(c)	x0123 ≥ 4				
	O 17 31 19 14 19				
	O_i II II II II II Pooling E_i 12.2 27.0 28.5 19.0 13.3 Pooling	M1			
	$\frac{(O-E)^2}{(O-E)^2} \frac{1.89}{0.59} \frac{0.59}{3.17} \frac{3.17}{1.32} \frac{1.32}{2.44}$				
	\overline{E} $(O-F)^2$	M1A1c.a.o.			
	$v = 5 - 2 = 3$, $\chi_3^2(5\%) = 7.815$	B1ft, B1ft			
	H_0 : Binomial distribution is a good/suitable model/fit [Condone: B(20, 0.1) is]				
	H ₁ : Binomial distribution is not a suitable model both	B1			
	(Significant result) Binomial distribution is not a suitable model	A1cao (7)			
(d)	defective items do <u>not occur independently</u> or <u>not with constant probability</u>	B1ft (1)			
		13			
(a)	M1 for attempt to find mean or \hat{p} (as printed or better). The 0.1 must be seen in part (a).				
(b)	M1 for correct expression for r or s using the binomial distribution. Follow through the second				
(c)	1 st M1 for some pooling (accept $x \ge 5$, obs.freq14, 9, 10 and exp.freq. 19.0, <i>s</i> , 4.3) 2 nd M1 for calculation of test statistic (N.B. $x \ge 5$ gives 14.5). One correct term seen.				
	2^{are} M1 for calculation of test statistic (N.B. $x \ge 5$ gives 14.5). One correct term seen. 1^{st} B1ft for number of classes – 2 (N.B. $x \ge 5$ will have 6 – 2 = 4)				
	2 nd B1ft for the appropriate tables value, ft their degrees of freedom. (NB $\chi_4^2(5\%) = 9.488$)				
	3^{rd} B1 (for hypotheses) allow just "X ~ B(20, 0.1)" for null etc.	4 (0,0) (0,00)			
	$2^{nd} A1$ for correctly rejecting Binomial model. No ft and depends on $2^{nd} N$	<i>I</i> 1.			
(d)	B1ft for independence or constant probability – must mention defective items of	r defectives			
	Follow through their conclusion in (c). So if they do not reject they may sa	ay "defectives			
	occur with probability 0.1". Stating the value implies constant probability.				

Question number	Scheme	Marks	
5. (a)	$\hat{\mu} = \overline{x} = \frac{361.6}{80}, = \underline{4.52}$ $\hat{\sigma}^2 = s^2 = \frac{1753.95 - 80 \times \overline{x}^2}{79} = (1.51288)$	M1, A1	
	$\hat{\sigma}^2 = s^2 = \frac{1753.95 - 80 \times \overline{x}^2}{79} = (1.51288)$	M1A1ft	
	AWRT <u>1.51</u>	A1	(5)
(b)	$\mathbf{H}_0: \boldsymbol{\mu}_A = \boldsymbol{\mu}_B \qquad \mathbf{H}_1: \boldsymbol{\mu}_A > \boldsymbol{\mu}_B$	B1 B1	
	Denominator	M1	
	$z = \frac{4.52 - 4.06}{\sqrt{\frac{1.51}{80} + \frac{2.50}{60}}} = \left(\frac{0.46}{\sqrt{0.0605}}\right)$	dM1	
	= (+) 1.8689 AWRT $(+) 1.87$	A1	
	One tail c.v. is $z = 1.6449$ (AWRT 1.645 or probability AWRT 0.0307 or 0.0308)	B1	
	(significant) there is evidence that diet A is better than diet $B \underline{\text{or}}$		
	evidence that (mean) weight lost in first week using diet A is more than with B	A1ft	(7)
(c)	CLT enables you to assume that \overline{A} and \overline{B} are normally distributed	B1	(1)
(d)	Assumed $\sigma_A^2 = s_A^2$ and $\sigma_B^2 = s_B^2$ (either)	B1	(1)
		14	
(a)	2 nd M1 for a correct attempt at <i>s</i> or s^2 , A1ft for correct expression for s^2 , ft their N.B. $\sigma^2_n = 1.49$ so $\frac{80}{79} \times 1.49$ is M1A1ft 1 st B1 can be given for $\mu_1 = \mu_2$, but 2 nd B1 must specify which is <i>A</i> or <i>B</i> .	mean.	
(b)	1 st M1 for the denominator, follow through their 1.51.		
	Must have square root can condone 2.50 ² but $\sqrt{\frac{1.51^2}{80} + \frac{2.50^2}{60}}$ is M0.		
	Allow $\sqrt{\frac{1.51}{79} + \frac{2.50}{59}}$ leading to AWRT 1.85 to score M1M1A0 in (b) and c	can score in (d)).
	2 nd dM1 for attempting the correct test statistic, dependent on denominator n	nark	
	1^{st} A1for AWRT \pm 1.87, may be implied by a correct probability. 2^{nd} A1ftft their test statistic vs their cv only if H ₁ is correct and both Ms are	e scored	
(c) (d)	B1 for stating <u>either</u> \overline{A} or \overline{B} (but not A or B) are normally distributed B1 for either, can be stated in words in terms of variances or standard deviation	ns.	

Question number	Scheme	Marks			
6.	$\overline{x} = \frac{1}{2} (123.5 + 154.7) = 139.1$	B1			
	2.5758	B1			
	"their 2.5758" $\frac{\sigma}{\sqrt{n}} = 154.7 - 139.1 = 15.6$	M1			
	AWRT 1.96	B1			
	"their 1.96" $\frac{\sigma}{\sqrt{n}} = \frac{15.6 \times 1.96}{2.5758} = (11.87)$	M1			
	So 95% C.I. = $139.1 \pm 11.87 = (127.22, 150.97)$ AWRT (127, 151)	A1 6			
	1^{st}B1 for mean = 139.1 only	0			
	1^{st} M1 for UL – mean or mean – LL set equal to z value times standard error or some equivalent				
	expression for standard error. Follow through their 2.5758 provided a <i>z</i> value.				
	May be implied by $\frac{\sigma}{\sqrt{n}} = 6.056$ [N.B. $\frac{15.6}{2.3263} = 6.705$]				
	Condone poor notation for standard error if it is being used correctly to find CI.				
	2 nd M1 for full method for semi-width (or width) of 95% interval				
	Follow through their z values for both M marks				
	N.B. Use of 2.60 instead of 2.5758 should just lose 2 nd B1 since it leads to AWR	Г (127, 151)			

Question number	Scheme	Marks
7. (a)	Let $X = L - 4S$ then $E(X) = 19.7 - 4 \times 4.9 = 0.1$ $Var(X) = Var(L) + 4^2 Var(S) = 0.5^2 + 16 \times 0.2^2$ = 0.89 P(X > 0) = [P(Z > -0.10599)] = AWRT (0.542 - 0.544)	M1, A1 M1, M1 A1 M1 A1 (7)
(b)	$T = S_1 + S_2 + S_3 + S_4$ (May be implied by 0.16) $T \neg N(19.6, 0.16)$ $E(T) = 19.6$ $Var(T) = 0.16 \text{ or } 0.4^2$	M1 B1
(c)	Let $Y = L - T$ $E(Y) = E(L) - E(T) = [0.1]$ Var(Y) = Var(L) + Var(T) = [0.41] Require $P(-0.1 < Y < 0.1)$ = P(Z < 0) - P(Z < -0.31) or $0.5 - P(Z < -0.31)$ or $P(Z < 0.31) - P(Z < 0)= 0.1217$ (tables) or 0.1226 (calc) $AWRT (0.122 - 0.123)$	M1 M1 M1 M1 A1 (5) 15
(a)	1 st M1 for defining <i>X</i> and attempting $E(X)$ 1 st A1 for 0.1. Answer only will score both marks. 2 nd M1 for $Var(L) + \dots$ 3 rd M1 for $\dots 4^2 Var(S)$. For those who don't attempt $L - 4S$ this will be their only 2 nd A1 for 0.89 4 th M1 for attempting a correct probability, correct expression and attempt to find, involve some standardisation: ft their $\sqrt{0.89}$ and their 0.1. If 0.1 is used for $E(X)$ answer should be > 0.5, otherwise M0.	
(c)	1 st M1 for a correct method for E(<i>Y</i>), ft their E(<i>T</i>). 2 nd M1 for a correct method for Var(<i>Y</i>), ft their Var(<i>T</i>). Must have +. 3 rd M1 for dealing with the modulus and a correct probability statement. Must be modulus free. May be implied by e.g. $P(Z < \frac{0.2}{\sqrt{\text{their 0.41}}}) - 0.5$, or seeing both 0.378 (or 0.622) and 0.5 4 th M1 for correct expression for the correct probability, as printed or better. E.g. 0.5 + 0.378 is M A1 for AWRT in range.	

Mark Scheme (Results) June 2008

GCE

Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH

A PEARSON COMPANY

June 2008 6691 Statistics S3 Mark Scheme

Question number	Scheme		Marks
1. (a)	$\overline{x} = \left(\frac{6046}{36}\right) = 167.94$	awrt 168	B1
	$s^2 = \frac{1016338 - 36 \times \overline{x}^2}{35}$		M1
	= 27.0253	awrt 27.0 (Accept 27)	A1 (3)
		(110000127)	
(b)	99% Confidence Interval is: $\overline{x} \pm 2.5758 \times \frac{5.1}{\sqrt{36}}$		M1A1ft
		2.5758	B1
	= (165.755, 170.133)	awrt (166,170)	A1 A1 (5)
			8 marks
(a)	M1 for a correct expression for s^2 , follow through	n their mean, beware it is ver	y "sensitive"
	$167.94 \rightarrow \frac{999.63}{35} \rightarrow 28.56$		
	$167.9 \rightarrow \frac{1483.24}{35} \rightarrow 42.37$	These would all score M1A0	
	$168 \rightarrow \frac{274}{35} \rightarrow 7.82$		
	Use of 36 as the divisor (= 26.3) is M0A0		
(b)	M1 for substituting their values in $\overline{x} \pm z \times \frac{5.1 \text{ or } s}{\sqrt{36}}$	where z is a recognizable va	lue from tables
	1^{st} A1 follow through their mean and their z (to 2dp)	in $\overline{x} \pm z \times \frac{5.1}{\sqrt{36}}$	
	Beware: $167.94 \pm 2.5758 \times \frac{5.1^2}{36} \rightarrow (166.07, 1)$	69.8) but scoresB1M0A0A	.0A0
	Correct answer only in (b) scores 0/5		
	2 nd & 3 rd A marks depend upon 2.5758 and M mark.		

Question number		Marks			
2.	$\frac{115 \times 70}{217} = 37.0967 \text{ or } \frac{1150}{31} \text{ (etc) } \frac{1265}{31}, \frac{1020}{31}, \frac{1122}{31}$				M1
	Expected (Obs)	А	S	Н	
	Boy	37.1 (30)	37.1 (50)	40.8 (35)	
	Girl	32.9 (40)	32.9 (20)	36.2 (42)	
					A1A1
	H ₀ : There is no associ	ation between cou	rse and gender		
	H_1 : There is some as	ssociation betwee	n course and gende	r (both)	B1
	$\sum \frac{\left(O-E\right)^2}{E} = \frac{\left(37.1+1\right)^2}{37}$	$\left(\frac{-30}{7.1}\right)^2 + \frac{(32.9 - 4)}{32.9}$	$\frac{(0)^2}{(36.2-42)^2} + \dots + \frac{(36.2-42)^2}{(36.2-42)^2}$	$2)^{2}$	M1A1ft
	= 1.358 + 4.485 + 0.8	824 + 1.532 + 5.0	58 + 0.929 = 14.18	9 awrt 14.2	A1
	v = (3-1)(2-1) = 2,) B1, B1ft			
	Significant result o	M1			
	There is evidence of	A1ft (11)			
	[Correct answ	vers only score fu	ll marks]		11 marks
ALT	$\sum \frac{O^2}{E} - N = \frac{30^2}{37.1} + \frac{30^2}{37$	$\frac{40^2}{32.9} + \dots + \frac{42^2}{36.2} - 2$	217		M1A1ft
	1 st M1 for some use of	of the $\frac{\text{row total} \times \alpha}{\text{grand total}}$	col total otal		
	1 st A1 for one correc	ct row or one corr	ect column of expe	cted frequencies to near	rest integer
	2 nd A1 for all expected	ed frequencies co	rrect to awrt 1 dp (Allow exact fractions)	
	1 st B1 for hypothese	s. Independence	is OK. Must menti	on courses and gender a	t least once.
	Use of ρ or '	'correlation" is B	0 but allow ISW.		
	2 nd M1 for an attemp	t to calculate test	statistic. At least o	ne correct expression, f	t expected freq.
	3 rd A1 follow throug	h expected freque	encies for at least 3	expressions	
	3 rd M1 for a correct s	statement relating	their test statistic a	nd their cv (may be imp	olied by comment)
	5 th A1 for a contextu	alised comment	relating their test sta	atistic and their cv. Ign	hore their H_0 or H_1
	or assume that	t they were corre	ct. Must mention	courses and gender	

Question number	Scheme	Marks
3. (a)	(i) † + (ii) † +	(i) B1
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(ii) B1B1 (3)
(b)(i)		M1M1
	ABCDEFGRank (Judge 1)1423567Rank (Judge 2)1243576 d^2 0440011	
		M1A1
	$r_s = 1 - \frac{6 \times 10}{7 \times (49 - 1)} = 1 - \frac{5}{28} = \frac{23}{28}$ or awrt 0.821	M1A1 (6)
(ii)	$H_0: \rho = 0 \qquad H_1: \rho > 0 \qquad (Allow \ \rho_S) \qquad (H_1: \rho \neq 0 \text{ scores B0})$	B1,B1
	r_s 5% one tail critical value is 0.7143	B1
	Significant result or reject null hypothesis	M1
	There is evidence of a (positive) correlation between the judges or the judges agree	A1ft (5)
		14 marl
(a) (i)	1 st B1 for 5 or more points on a straight line of positive gradient	
(ii)	2^{nd} B1 for 4 or more points satisfying $-1 < r < 0$	
	3 rd B1 for 5 or more points of decreasing ranks not on a straight line	
(b)(i)	 1st M1 for attempting to rank one of the judges (at least 2 correct rankings) 2nd M1 for ranking both (may be reversed) (at least 2 correct rankings) 	
	$3^{\rm rd}$ M1 for attempting d^2 .	
	$1^{\text{st}} \text{A1} \text{ for } \sum d^2 = 10$	
	4^{th} M1 for correct use of the r_s formula	
(ii)	3^{rd} B1 for the correct critical value - depends upon their H ₁ : $\rho > 0$ needs 0.7143,	$\rho \neq 0$, 0.7857
	The H ₁ may be in words so B0B1 is possible. If no H ₁ award for 0.7143	
	5^{th} M1 for a correct statement relating their r_s and their cv (may be implied by con	
	3^{rd} A1ft follow through their r_s and their cv. Comment in context. Must me	ntion judges.
	Don't insist on "positive" and condone it if they are using $\rho \neq 0$.	

Question number	Scheme	Marks	
4. (a)	$X = M_1 + M_2 + M_3 + M_4 \sim N(336, 22^2) \qquad \mu = 336$	B1	
	$\sigma^2 = 22^2$ or 484	B1	
	$P(X < 350) = P(Z < \frac{350 - 336}{22})$	M1	
	= P(Z < 0.64) awrt 0.64	A1	
	= awrt 0.738 or 0.739	A1 (5)	
(b)	$M \sim N(84, 121)$ and $W \sim N(62, 100)$ Let $Y = M - 1.5W$	M1	
	$E(Y) = 84 - 1.5 \times 62 = -9$	A1	
	$\operatorname{Var}(Y) = \operatorname{Var}(M) + 1.5^2 \operatorname{Var}(W)$	M1	
	$= 11^2 + 1.5^2 \times 10^2 = 346$	A1	
	P(Y < 0), = $P(Z < 0.48)$ = awrt 0.684 ~ 0.686	M1, A1 (6)	
		11 marks	
(b)	$\frac{11 \text{ marks}}{2^{\text{nd}} \text{ B1 for } \sigma = 22 \text{ or } \sigma^2 = 22^2 \text{ or } 484}$ M1 for standardising with their mean and standard deviation (ignore direction of inequality) $1^{\text{st}} \text{ M1 for attempting to find } Y. \text{ Need to see } \pm (M - 1.5W) \text{ or equiv. May be implied by Var}(Y).$ $1^{\text{st}} \text{ A1 for a correct value for their E}(Y) \text{ i.e. usually } \pm 9. \text{ Do not give M1A1 for a "lucky" } \pm 9.$ $2^{\text{nd}} \text{ M1 for attempting Var}(Y) \text{ e.g. } \dots + 1.5^2 \times 10^2 \text{ or } 11^2 + 1.5^2 \times \dots.$ $3^{\text{rd}} \text{ M1 for attempt to calculate the correct probability. Must be attempting a probability > 0.5.$ Must attempt to standardise with a relevant mean and standard deviation $U \text{ sing } \sigma^2_{M} = 11 \text{ or } \sigma^2_{W} = 10 \text{ is not a misread.}$		

Question number	Scheme	Marks	
5. (a)	Only cleaners - no managers i.e. not all <u>types</u> . OR Not a random sample 1^{st} 50 may be in same shift/group/share <u>same views</u> . OR Not a random sample (Allow "not a representative sample" in place of "not a random sample")	B1g B1h	(2)
(b)(i)	Label employees (1-550) or obtain an ordered list Select <u>first</u> using <u>random numbers</u> (from 1 - 11) Then select every 11^{th} person from the list	B1 B1 B1	
(ii)	Label managers (1-55) and cleaners (1-495) Use random numbers to select 5 managers and 45 cleaners	M1 M1 A1	(6)
(c)	390, 372 (They must be in this order)	B1, B1 10 marks	(2)
(a)	After 1st B1, comments should be in context, i.e. mention cleaners, managers, typ1st B1gfor one row2nd B1hfor both rows. "Not a random sample" only counts once.Score B1B0 or B1B1 or B0B0 on EPEN	es of worker e	tc
(b)(i)	1 st B1 for idea of labelling or getting an ordered list. No need to see 1-550. 2 nd B1 selecting first member of sample using random numbers (1-11 need not be 3 rd B1 selecting every <i>n</i> th where $n = 11$.	e mentioned)	
(ii)	 1st M1 for idea of <u>two</u> groups and labelling <u>both</u> groups. (Actual numbers used no 2nd M1 for use of random numbers within each strata. Don't give for SRS from al "Assign random numbers to managers and cleaners" scores M0M1 A1 for 5 managers <u>and</u> 45 cleaners. (This mark is dependent upon scoring at least strate) 	1 550.	

Question number	Scheme	Marks		
6. (a)	$p = \frac{0 \times 11 + 1 \times 21 + \dots}{10 \times (11 + 21 + \dots) \text{ or } 10 \times 100}, = \frac{223}{1000} = 0.223 (*) \qquad (\text{Accept } \frac{223}{1000})$	M1, A1cso (2)		
(b)	$r = (0.8)^{10} \times 100 = 10.7374$ awrt 10.74	M1A1		
	$s = {\binom{10}{2}} (0.8)^8 \times (0.2)^2 \times 100 = 30.198$ awrt 30.2	A1		
	t = 100 - [r + s + 26.84 + 20.13 + 8.81] = awrt 3.28	A1cao (4)		
(c)	H_0 : Binomial ([$n = 10$], $p = 0.2$) is a suitable model for these data	B1		
	H_1 : Binomial ([<i>n</i> =10], <i>p</i> = 0.2) is NOT a suitable model for these data	B1 (2)		
(d)	Since $t < 5$, the last two groups are combined	M1		
	and $v = 4 = 5 - 1$	A1 (2)		
(e)	Critical value $\chi_4^2(5\%) = 9.488$	B1		
	Not significant or do not reject null hypothesis	M1		
	The binomial distribution with $p = 0.2$ is a suitable model for the number of			
	cuttings that do not grow	A1 (3)		
		13 marks		
(a)	M1 Must show clearly how to get either 223 or 1000. As printed or better.			
	A1cso for showing how to get <u>both</u> 223 and 1000 and reaching $p = 0.223$			
(b)	M1 for any correct method (a correct expression) seen for r or s .			
	1^{st} A1 for correct value for <i>r</i> awrt 10.74			
	2^{nd} A1 for $s = awrt 30.2$			
	3^{rd} A1 for $t = 3.28$ only			
(c)	B1 for each. The value of p must be mentioned at least once. Accept B(10, 0.2)		
	If hypotheses are correct but with no value of p then score B0B1			
	Minimum is $X \sim B(10, 0.2)$. If just $B(10, 0.2)$ and not $B(10, 0.2)$ award B11			
(d)	M1 for combining groups (must be stated or implied by a new table with comb	onned cell seen)		
	A1 for the calculation $4 = 5 - 1$	1 • • • •		
(e)	M1 for a correct statement based on 4.17 and their cv(context not required) (m	ay be implied)		
	Use of 4.17 as a critical value scores B0M0A0			
	A1 for a correct interpretation in context and $p = 0.2$ and cuttings mentioned.			

Question number	Scheme	Marks
7. (a)	$H_0: \mu_F = \mu_M$ $H_1: \mu_F \neq \mu_M$ (Allow μ_1 and μ_2)	B1
	$z = \frac{6.86 - 5.48}{\sqrt{\frac{4.51^2}{200} + \frac{3.62^2}{100}}}$	M1 A1
	= 2.860 awrt (+) 2.86	A1
	2 tail 5% critical value (\pm) 1.96 (or probability awrt 0.0021~0.0022)	B1
	Significant result or reject the null hypothesis (o.e.)	M1
	There is evidence of a difference in the (mean) amount spent on junk food by	
	male and female teenagers	A1ft (7)
(b)	CLT enables us to assume \overline{F} and \overline{M} are normally distributed	B1 (1) 8 marks
(a) (b)	1 st M1 for an attempt at $\frac{a-b}{\sqrt{\frac{c}{100 \text{ or } 200} + \frac{d}{100 \text{ or } 200}}}}$ with 3 of <i>a</i> , <i>b</i> , <i>c</i> or <i>d</i> correct 1 st A1 for a fully correct expression 2 nd B1 for \pm 1.96 <u>but</u> only if their H ₁ is two-tail (it may be in words so B0B1 is 0 If H ₁ is one-tail this is automatically B0 too. 2 nd M1 for a correct statement based on comparison of their <i>z</i> with their cv. May 1 3 rd A1 for a correct conclusion in context based on their <i>z</i> and 1.96. Must mention junk food or money and male vs female. B1 for \overline{F} or \overline{M} mentioned. Allow "mean (amount spent on junk food) is normal so mean is.	be implied mally distributed"

Mark Scheme (Results) Summer 2009

GCE

GCE Mathematics (6691/01)

June 2009 6691 Statistics S3 Mark Scheme

Ques Num	stion nber	Scheme	Mar	ks
Q1	(a)	Randomly select a number between 00 and 499 (001 and 500) select every 500 th person	B1 B1	(2)
	(bi)	<u>Quota</u> Advantage: <u>Representative</u> sample can be achieved (with small sample size)		(-)
		<u>Cheap</u> (costs kept to a minimum) <u>not</u> "quick" Administration relatively <u>easy</u> Disadvantage	B1	
		Not possible to estimate sampling errors (due to lack of randomness) Not a random process Judgment of interviewer can affect choice of sample – <u>bias</u> Non-response not recorded	B1	
	(bii)	Difficulties of defining controls e.g. social class		(2)
		<u>Systematic</u> Advantage: <u>Simple or easy to use <u>not</u> "quick" or "cheap" or "efficient"</u>	B1	
		It is suitable for large <u>samples</u> (not populations) Disadvantage Only random if the ordered list is (truly) random	B1	(2)
		Requires a list of the population <u>or</u> must assign a number to each member of the pop.		[6]
	(a)	$ \begin{array}{l} 1^{\text{st}} B1 \\ 2^{\text{nd}} B1 \end{array} \begin{array}{l} \text{for idea of using random numbers to select the first from 1 - 500 (o.e.)} \\ \text{for selecting every 500}^{\text{th}} \text{ (name on the list)} \end{array} $		
		If they are clearly trying to carry out stratified sample then score B0B0		
	(b)	Score B1 for any one line		
	(i)	 1st B1 for Quota advantage 2nd B1 for Quota disadvantage 		
	(ii)	3 rd B1 for Systematic Advantage 4 th B1 for Systematic Disadvantage		

Ques Num		Scheme	Mark	(S
Q2	(a)	Limits are $20.1 \pm 1.96 \times 0.5$	M1 B1	
		<u>(19.1, 21.1)</u>	A1cso	(3)
	(b)	98 % confidence limits are		
		$20.1 \pm 2.3263 imes rac{0.5}{\sqrt{10}}$	M1 B1	
		<u>(19.7, 20.5)</u>	A1A1	(4)
	(c)	The growers claim is not correct Since 19.5 does not lie in the interval (19.7, 20.5)	B1 dB1	(2) [9]
	(a)	M1 for $20.1 \pm z \times 0.5$. Need 20.1 and 0.5 in correct places with no $\sqrt{10}$ B1 for $z = 1.96$ (or better) A1 for awrt 19.1 and awrt 21.1 but must have scored both M1 and B1 [Correct answer only scores 3/3]		
	(b)	M1 for $20.1 \pm z \times \frac{0.5}{\sqrt{10}}$, need to see 20.1, 0.5 and $\sqrt{10}$ in correct places B1 for $z = 2.3263$ (or better) 1 st A1 for awrt 19.7 2 nd A1 for awrt 20.5 [Correct answer only scores M1B0A1A1]		
	(c)	 1st B1 for rejection of the claim. Accept "unlikely" or "not correct" 2nd dB1 Dependent on scoring 1st B1 in this part for rejecting grower's claim for an argument that supports this. Allow comment on <u>their</u> 98% CI from (b) 		

Ques Num		Scheme	Marks
Q3	(a)		
		A B C D E F G H I J	
		BMI 1 6 3 8 4 5 7 2 9 10	M1
		or 10 5 8 3 7 6 4 9 2 1	
		Finishing position 3 5 1 9 6 4 10 2 7 8	
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
		$\sum d^2 = 32$ (298)	M1
		$r_s = 1 - \frac{6 \times 32}{10 \times 99}$	M1 A1ft
		10×99	
		= 0.80606 (-0.80606) accept $\pm \frac{133}{165}$ <u>awrt ± 0.806</u>	A1 (5)
	(b)	$H_0: \rho = 0, H_1: \rho > 0,$	B1 B1
		Critical value is $(\pm)0.5636$	B1
		(0.806 > 0.5636 therefore) in critical region/ reject H ₀	M1 A1ft
	(c)	The lower the BMI the higher the position in the race./ support for doctors belief	(5)
	(0)	The position is already ranked OR Position is not Normally distributed	B1 (1) [11]
	(a)	1 st M1 for attempt to rank BMI scores]
	(a)	2^{nd} M1 for attempt at $\sum d^2$ (must be using ranks)	
			No ranking
		3^{rd} M1 for use of the correct formula with their $\sum d^2$. If answer is not correct an expression is required.	can score 3 rd M1 only
		1 st A1ft for a correct expression. If their $\sum d^2$ but only if all 3 Ms are scored	
		2^{nd}A1 awrt ± 0.806 (but sign must be compatible with their $\sum d^2$)	
	(b)		
		2^{nd} B1 for $\rho > 0$ (or <0 but must be one tail and consistent with their ranking)	No H ₁
		3^{rd} B1 for critical value that is compatible with their H ₁ . If one-tail must be	assume one-
		\pm 0.5636 if two-tail must be \pm 0.6485 [Condone wrong sign]	tail for 3 rd B1
		M1 for a correct statement relating their r_s with their cv.	
		e.g. "reject H_0 ", "in critical region", "significant result"	
		May be implied by a correct comment	
		A1ft for correct comment in context. Must mention low/high BMI and race/fitness or doctor's belief. Comment should be <u>one-tailed</u> .	
	ഹ	Allow positive <u>correlation</u> between but <u>NOT</u> positive <u>relationship</u>	
	(c)	B1 for a correct and relevant comment either based on the fact that the data was originally partially ordered <u>or</u> on the underlying normal assumption "Quicker" or "easier" score B0	

Question Number	Scheme	Marks
Q4	$X \sim N (55,3^2)$ therefore $\overline{X} \sim N (55,\frac{9}{8})$	B1 B1
	P ($\overline{X} > 57$) = P (Z > $\frac{57 - 55}{\sqrt{\frac{9}{8}}}$) = P(Z > 1.8856)	M1
	= 1 - 0.9706 = 0.0294 <u>0.0294~0.0297</u>	M1 A1 [5]
	1 st B1 for \overline{X} ~ normal and $\mu = 55$, may be implied but must be \overline{X} 2 nd B1 for Var(\overline{X}) or st. dev of \overline{X} e.g. \overline{X} ~ N(55, $\frac{9}{8}$) or \overline{X} ~ N $\left(55, \left(\frac{3}{\sqrt{8}}\right)^2\right)$ for B1B1 Condone use of X if they clearly mean \overline{X} so X ~ N $\left(55, \frac{9}{8}\right)$ is OK for B1B1 1 st M1 for an attempt to standardize with 57 and mean of 55 and their st. dev. ≠ 3 2 nd M1 for 1 - tables value. Must be trying to find a probability < 0.5 A1 for answers in the range 0.0294~0.0297	
ALT	$\sum_{1}^{8} X_i \sim N(8 \times 55, 8 \times 3^2)$ 1 st B1 for $\sum X \sim normal and mean = 8 \times 55$ 2 nd B1 for variance = 8×3^2 1 st M1 for attempt to standardise with 57×8, mean of 55×8 and their st dev $\neq 3$	

Question Number			Sche	me			Mar	ks
Q5 (a)	$\lambda = \frac{0 \times 40 + 1 \times 33 + 2 \times 14}{100}$	$+3 \times 8 + 4 \times 5 - 1.0$)5			M1 A1	(2)
(b)	Using Expected frequence	$ey = 100 \times P(X = x)$	$e^{-1.05}1.0$ × $\frac{e^{-1.05}1.0}{r!}$	$\frac{0.5^x}{0.5}$ gives		M1	
	i	r = 36.743		<i>X</i> :	awrt 36.743 or 3	36.744	A1	
	1	s = 19.290			19.29 or awrt 1	9.290	A1	(3)
(c	-	H ₀ : Poisson distribution H ₁ : Poisson distribution		odel			B1	
		Number of goals	Frequency	Expected frequency				
		0	40	34.994				
		1	33	36.743				
		2	14	19.290		-		
		3	8	6.752	8.972443		M1	
		<u>≥</u> 4	5	2.221	0.972443			
		v = 4 - 1 - 1 = 2 CR : $\chi_2^2 (0.05) > 5.991$ $\sum \frac{(O - E)^2}{E} = \frac{(40 - 34.9)^2}{34.993}$ = 4.356. Not in critical region Number of goals scored c	[=0 (ans in range 4.	.7161+0.3813. 2 - 4.4)	+1.4508+1.80 anagers claim is ju	_	B1ft B1 M1 A1 A1 ft	(7) [12]
(a	i)	M1 for an attempt to fir Correct answer onl			erator seen			
(b (c	;)	 M1 for use of correct formula (ft their mean). 1st A1 for <i>r</i>, 2nd A1 for <i>s</i> (19.29 OK) 1st B1 Must have both hypotheses and mention Poisson at least once inclusion of their value for mean in hypotheses is B0 but condone in conclusion 1st M1 for an attempt to pool ≥ 4 2nd B1ft for <i>n</i>-1-1 = 2 i.e realising that they must subtract 2 from their <i>n</i> 3rd B1 for 5.991 only 2nd M1 for an attempt at the test statistic, at least 2 correct expressions/values (to 3sf) 1st A1 for answers in the range 4.2~4.4 2nd A1 for correct comment in context based on their test statistic and their cv that mentions goals or manager. Dependent on 2nd M1 						
			on of Po(1.05) in c consistencies e.g. ' d"		wed by "manager	's		

Question Number	Scheme	Marks	S
Q6 (a)	$\mu_{\rm u}$ ~ mean length of upper shore limpets, $\mu_{\rm L}$ ~ mean length of lower shore limpets		
	$H_0: \mu_u = \mu_L$		
	$H_1: \mu_u < \mu_L$ both	B1	
	$\sqrt{0.42^2 - 0.67^2}$	M1	
	s.e. = $\sqrt{\frac{0.42^2}{120} + \frac{0.67^2}{150}}$	A1	
	= 0.0668		
	$z = \frac{5.05 - 4.97}{0.0668} = (\pm)1.1975$ awrt ± 1.20	dM1 A1	
	Critical region is $z \ge 1.6449$, or probability = awrt (0.115 or 0.116) $z = \pm 1.6449$	B1	
	(1.1975 < 1.6449) therefore not in critical region / accept H ₀ /not significant (or P(Z \ge 1.1975) = 0.1151, 0.1151 > 0.05 or z not in critical region)	M1	
	There is no evidence that the limpets on the upper shore are shorter than the limpets on the lower shore.	A1	
	Assume the populations or variables are independent	B1	
(b)	Standard deviation of sample = standard deviation of population	B1	
	[Mention of <u>Central Limit Theorem</u> does <u>NOT</u> score the mark]	[[1
(a)	1 st B1 If μ_1, μ_2 used then it must be clear which refers to upper shore. Accept sensible choice of letters such as <i>u</i> and <i>l</i> .		
	1 st M1 Condone minor slips e.g. $\frac{0.67^2}{120}$ or $\frac{0.67}{150} + \frac{0.42^2}{120}$ etc i.e. swapped <i>n</i> or one		
	sd and one variance but M0 for $\sqrt{\frac{0.67}{150} + \frac{0.42}{120}}$		
	1 st A1 can be scored for a fully correct expression. May be implied by awrt 1.20		
	$2^{nd} dM1$ is dependent upon the $1^{st} M1$ but can ft their se value if this mark is scored.		
	$2^{nd} A1$ for awrt (<u>+</u>) 1.20		
	3^{rd} M1 for a correct statement based on their <i>z</i> value and their cv. No cv is M0A0 If using probability they must compare their <i>p</i> (<0.5) with 0.05 (o.e) so can allow 0.884< 0.95 to score this 3^{rd} M1 mark. May be implied by their contextual statement and M1A0 is possible.		
(b)	3^{rd} A1 for a correct comment to accept null hypothesis that mentions <u>length</u> of <u>limpets</u> on the two <u>shores</u> .		
	1 st B1 for one correct statement. Accept "samples are independent"		
	2^{nd} B1 for both statements		

Questi Numbe		Scheme	Marks
Q7 ((a)	Estimate of Mean = $\frac{600.9}{5}$ = 120.18	M1A1
		Estimate of Variance = $\frac{1}{4}$ { 72216.31 - $\frac{600.9^2}{5}$ } or $\frac{0.148}{4} = 0.037$	M1 A1ft A1 (5)
((b)	$P(-0.05 < \mu - \hat{\mu} < 0.05) = 0.90$ or $P(-0.05 < \overline{X} - \mu < 0.05) = 0.90$ [\le is OK]	B1
		$\frac{\frac{0.05}{0.2}}{\frac{\sqrt{n}}{\sqrt{n}}} = 1.6449$	M1 A1
		$n = \frac{1.6449^2 \times 0.2^2}{0.05^2}$	dM1
		n = 43.29	A1
		n = 44	A1 (6)
			[11]
((a)	1 st M1 for an attempt at $\sum x$ (accept 600 to 1sf)	
		1 st A1 for $\frac{600.9}{5}$ = awrt 120 or awrt 120.2. No working give M1A1 for awrt 120.2	
		2^{nd} M1 for the use of a correct formula including a reasonable attempt at	
		$\sum x^2$ (Accept 70 000 to 1sf) or $\sum (x - \overline{x})^2 = 0.15$ (to 2 dp)	
		2^{nd} A1ft for a correct expression with correct $\sum x^2$ but can ft their mean (for	
		expression - no need to check values if it is incorrect) 3 rd A1 for 0.037 Correct answer with no working scores 3/3 for variance	
((b)	B1 for a correct probability statement <u>or</u> "width of 90% $CI = 0.05 \times 2 = 0.1$ "	1 st B1 may
		1 st M1 for $\frac{0.05}{\frac{0.2}{\sqrt{n}}} = z$ value or $2 \times \frac{0.2}{\sqrt{n}} \times z = 0.1$	be implied by 1 st A1 scored or
		Condone 0.5 instead of 0.05 <u>or missing 2 or 0.05 for 0.1</u> for M1 1 st A1 for a correct equation including 1.6449	correct equation.
		2^{nd} dM1 Dependent upon 1^{st} M1 for rearranging to get $n =$ Must see "squaring"	
		$2^{nd} A1$ for <i>n</i> = awrt 43.3	
		3^{rd} A1 for rounding up to get $n = 44$	
		Using e.g.1.645 instead of 1.6449 can score all the marks except the 1 st A1	

Question Number	Scheme	Marks
Q8 (a)	$E(4X-3Y) = 4E(X) - 3E(Y) = 4 \times 30 - 3 \times 20 = 60$	M1 A1 (2)
(b)	Var(4X-3Y) = 16 Var(X) + 9 Var(Y) = 16 × 9 + 9 × 4 = 180 16 or 9; adding	M1; M1 A1 (3)
(c)	E(B) = 80 Var (B) = 16 E(B - A) = 20 Var (B - A) = 196 E(B)-E(A) ft on 180 and 16	(3) B1 B1 M1 A1ft
	P (B - A >0) = P $\left(Z > \frac{-20}{\sqrt{196}}\right) = \left[P(Z > -1.428)\right]$ stand. using their mean and var = 0.923 awrt 0.923 - 0.924	dM1 A1 (6) [11]
(a)	M1 for correct use of $E(aX + bY)$ formula	
(b)	 1st M1 for 16Var(X) or 9Var(Y) 2nd M1 for adding variances Key points are the 16, 9 and +. Allow slip e.g using Var(X)=4 etc to score Ms 	
(c)	1 st M1 for attempting <i>B</i> - <i>A</i> and E(<i>B</i> - <i>A</i>) or <i>A</i> - <i>B</i> and E(<i>A</i> - <i>B</i>) This mark may be implied by an attempt at a correct probability e.g. $P\left(Z > \frac{0 - (80 - 60)}{\sqrt{180 + 16}}\right)$. To be implied we must see the "0" 1 st A1ft for Var(<i>B</i> - <i>A</i>) can ft their Var(<i>A</i>) = 180 and their Var(<i>B</i>) = 16 2 nd dM1 Dependent upon the 1 st M1 in part (c). for attempting a correct probability i.e. P(<i>B</i> - <i>A</i> >0) or P(<i>A</i> - <i>B</i> < 0) and standardising with their mean and variance. They must standardise properly with the 0 to score this mark	
	2^{nd} A1 for awrt 0.923 ~ 0.924	

Mark Scheme (Results) Summer 2010

GCE

GCE Statistics S3 (6691/01)

Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

Summer 2010 Publications Code UA024774 All the material in this publication is copyright © Edexcel Ltd 2010

Hypothesis Tests (Final M1A1)

For an incorrect comparison (e.g. probability with *z* value) even with a correct statement and/or comment award MOA0

For a correct or no comparison with <u>more than one statement one of which is false</u> Award M0A0 (This is compatible with the principle above of contradictory statements being penalised)

Apply these rules to all questions

June 2010 Statistics S3 6691 Mark Scheme

Question Number	Scheme	Marks	
Q1	$H_0: \mu = 80, H_1: \mu > 80$	B1,B1	
	$z = \frac{83 - 80}{15} = 2$	M1A1	
	$\overline{\sqrt{100}}$		
	2 > 1.6449 (accept 1.645 or better)	B1	
	Reject H_0 or significant result or in the critical region Managing director's claim is supported.	M1 A1 7	
	1 st B1 for H ₀ . They must use μ not <i>x</i> , <i>p</i> , λ or \overline{x} etc 2 nd B1 for H ₁ (must be > 80). Same rules about μ .	I	
	1 st M1 for attempt at standardising using 83, 80 and $\frac{15}{\sqrt{100}}$. Can accept <u>+</u> .		
	May be implied by $z = \pm 2$ 1 st A1 for + 2 only		
	$\begin{array}{lll} 3^{rd} B1 & \text{for } \pm 1.6449 \text{ seen (or probability of } 0.0228 \text{ or better)} \\ 2^{nd} M1 & for a correct statement about "significance" or rejecting H_0 (or H_1) based on their z value and their 1.6449 (provided it is a recognizable critical value from normal tables) or the probability (< 0.5) and significance level of 0.05. Condone their probability > 0.5 compared with 0.95 for the 2nd M1$		
	2 nd A1 for a correct contextualised comment. Must mention "director" and "claim" and "use of Internet". No follow through.	<u>or</u> "time"	
2 nd M1A1	If no comparison or statement is made but a correct contextualised comment is given the implied.	he M1 can be	
	If a comparison is made it must be <u>compatible</u> with statement otherwise M0 e.g. comparing 0.0228 with 1.6449 is M0 or comparing probability 0.9772 with 0.05 comparing -2 with - 1.6449 is OK provided a correct statement accompanies it condone -2 >-1.6449 provided their statement correctly rejects H ₀ .	is M0	
Critical Region	They may find a critical region for \overline{X} : $\overline{X} > 80 + \frac{15}{\sqrt{100}} \times 1.6449 = a \text{ wrt } 82.5$		
	1 st M1 for $80 + \frac{15}{\sqrt{100}} \times (z \text{ value})$		
	3 rd B1 for 1.645 or better		
	1 st A1 for awrt 82.5 The rest of the marks are as per the scheme.		

Question Number	Scheme	Marks
Q2	$[P \sim N(90,9) \text{ and } J \sim N(91,12)]$	
(a)	$(J - P) \sim N(1, 21)$	M1, A1
	$(J - P) \sim N(1, 21)$ P $(J < P) = P(J - P < 0)$	
	$= P\left(Z < \frac{0-1}{\sqrt{21}}\right)$	dM1
	= P(Z < -0.2182)	
	=1-0.5871=0.4129 awrt (0.413 ~ 0.414)	A1
	calculator (0.4136)	(4)
		(+)
(b)	$X = (J_1 + J_2 + \dots + J_{60}) - (P_1 + P_2 + \dots + P_{60})$	M1
	$E(X) = 60 \times 91 - 60 \times 90 = 60$ [stated as $E(X) = 60$ or $X \sim N(60,)$]	B1
	$Var(X) = 60 \times 9 + 60 \times 12 = 1260$	A1
		7 11
	$P(X > 120) = P\left(Z > \frac{120 - 60}{\sqrt{1260}}\right)$	M1
	= P(Z > 1.69030)	. 1
	=1-0.9545=0.0455 awrt (0.0455)	A1 (5)
		(5) 9
		,
(a)	1 st M1 for attempting $J - P$ and $E(J - P)$ or $P - J$ and $E(P - J)$ 1 st A1 for variance of 21 (Accept 9 + 12). Ignore any slip in μ here. 2 nd dM1 for attempting the correct probability and standardising with their mean and This mark is dependent on previous M so if $J - P$ (or $P - J$) is not being used If their method is not crystal clear then they must be attempting P(Z< -ve va P(Z > +ve value) i.e. their probability <u>after</u> standardisation should lead to a	d score M0 alue) or prob. < 0.5
	so e.g. $P(J - P < 0)$ leading to 0.5871 is M0A0 unless the M1 is clearly earn	ed.
	2^{nd} A1 for awrt 0.413 or 0.414	
	The first 3 marks may be implied by a correct answer	
(b)	1^{st} M1 for a clear attempt to identify a correct form for <i>X</i> . This may be implied by c variance of 1260	orrect
	B1 for $E(X) = 60$. Can be awarded even if they are using $X = 60J - 60P$. Allow	P - J and -60
	1 st A1 for a correct variance. If 1260 is given the M1 is scored by implication.	
	2 nd M1 for attempting a correct probability and standardising with 120 and their 60 a	
	If the answer is incorrect a full <u>expression</u> must be seen following through th	
	for M1 e.g. $P\left(Z > \frac{120 - \text{their } 60}{\sqrt{\text{their variance}}}\right)$. If using -60, should get $P\left(Z < \frac{-120 - \sqrt{120}}{\sqrt{120}}\right)$	$\frac{60}{\text{variance}}$
Use of means	Attempt to use $\overline{J} - \overline{P}$ for 1 st M1, E($\overline{J} - \overline{P}$) = 1 for B1 and Var($\overline{J} - \overline{P}$) = 0.3 Then 2 nd M1 for standardisation with 2, and their 1 and 0.35	5 for A1

Question Number	Scheme	Marks
Q3 (a)	$E \sim N(0, 0.5^2)$ or $X \sim N(w, 0.5^2)$	
	$P(E < 0.6) = P(Z < \frac{0.6}{0.5}) \text{or} P(X - w < 0.6) = P(Z < \frac{0.6}{0.5})$ $= P(Z < 1.2)$	M1
	$= 2 \times 0.8849 - 1 = 0.7698$ awrt 0.770	A1 (2)
(b)	$\overline{E} \sim N\left(0, \frac{1}{64}\right)$ or $\overline{X} \sim N\left(w, \frac{0.5^2}{16}\right)$	(2) M1
	$P\left(\left \overline{E}\right < 0.3\right) = P\left(\left Z\right < \frac{0.3}{\frac{1}{8}}\right) \text{or} P\left(\left \overline{X} - w\right < 0.3\right) = P\left(\left Z\right < \frac{0.3}{\frac{1}{8}}\right)$	M1, A1
	= P(Z < 2.4) = 2×0.9918-1=0.9836 awrt 0.984	A1 (4)
(C)	$35.6 \pm 2.3263 \times \frac{1}{8}$	M1 B1
	(35.3, 35.9)	A1,A1 (4) 10
(a)	1 st M1 for identifying a correct probability (they must have the 0.6) and attempting t	
	standardise. Need . This mark can be given for 0.8849 - 0.1151 seen as fin 1 st A1 for awrt 0.770. NB an answer of 0.3849 or 0.8849 scores M0A0 (since it in M1 may be implied by a correct answer	
(b)	1 st M1 for a correct attempt to define \overline{E} or \overline{X} but must attempt $\frac{\sigma^2}{n}$. Condone labell	ing as E or X
	This mark may be implied by standardisation in the next line.	
	2^{nd} M1 for identifying a correct probability statement using \overline{E} or \overline{X} . Must have 0.3 a 1^{st} A1 for correct standardisation as printed or better	and
	2 nd A1 for awrt 0.984 The M marks may be implied by a correct answer.	
Sum of 16, not	1 st M1 for correct attempt at suitable sum distribution with correct variance ($= 16 \times 2^{nd}$ M1 for identifying a correct probability. Must have 4.8 and	$(\frac{1}{4})$
means	1 st A1 for correct standardisation i.e. need to see $\frac{4.8}{\sqrt{4}}$ or better	
(c)	M1 for $35.6 \pm z \times \frac{0.5}{\sqrt{16}}$	
	$ \frac{16}{\sqrt{16}} $ B1 for 2.3263 or better. Use of 2.33 will lose this mark but can still score ³ / ₄ 1 st A1 for awrt 35.3 2 nd A1 for awrt 35.9	

Que: Num	stion Iber				Sch	neme						Marl	<s< th=""></s<>
Q4	(a)		Distance rank	1	2	3	4	5	6	7			
			Depth rank	1	2	4	3	6	7	5		M1	
		ſ	$\left d \right $	0	0	1	1	1	1	2		MI	
			d^2	0	0	1	1	1	1	4]	M1	
	(b)	$H_0: \rho =$ Critical $r_s < 0.8$ The res <u>or</u> insu <u>or</u> then	$\sum d^{2} = 8$ $r_{s} = 1 - \frac{6 \times 8}{7 \times 48}$ $= \frac{6}{7} = 0.857142$ $H_{0}: \rho = 0, H_{1}: \rho > 0$ Critical value at 1% level is 0.8929 $r_{s} < 0.8929 \text{ so not significant evidence to reject } H_{0},$ The researcher's claim is not correct (at 1% level). or insufficient evidence for researcher's claim or there is insufficient evidence that water gets deeper further from inner bank. or no (positive) correlation between depth of water and distance from inner bank								M1A1 M1 A1 B1 B1 M1 A1ft	(6) (4) 10	
	(a) (b)	1 st M1 2 nd M1 3 rd M1 1 st A1 4 th M1 2 nd A1 1 st B1 2 nd B1 M1 A1ft	2^{nd} M1for attempting d for their ranks. Must be using ranks. 3^{rd} M1for attempting $\sum d^2$ (must be using ranks) 1^{st} A1for sum of 8 (or 104 for reverse ranking) 4^{th} M1for use of the correct formula with their $\sum d^2$. If answer is not correct an e required. 2^{nd} A1for awrt (\pm) 0.857. Sign should correspond to ranking (so use of 104 should 1^{st} B1for both hypotheses in terms of ρ , H1 must be one tail and compatible with t for a correct statement relating their r_s with their cv but cv must be such that									d get -0.8 their ran t cv <1	57)

Question Number		Scheme											
Q5		Finances	Worse	Same	Better								
		15.000	10.54	10 54	10.00	24							
	Under £	and above	10.54 20.46	10.54 20.46	12.92 25.08	34 66		M1					
	213 000		31	31	38	100		A1					
	H_0 : Sta		B1										
	H_1 : Sta		DI										
	O_i	E_i	$\frac{\left(O_i - E_i\right)^2}{E_i}$	$\frac{O_i^2}{E_i}$									
	1.4	10.54											
	14	10.54	1.1358 0.0200	18.59 11.48				N // 1					
	9	12.92	1.1893	6.269				M1					
	17	20.46	0.5851	14.12				A1					
	20	20.46	0.0103	19.55									
	29	25.08	0.6126	33.53									
	$\sum \frac{(O_i)}{(O_i)}$	rt 3.5 5)	A1										
	$v = (3 - 1)^{-1}$		B1										
	cv is 5.991												
	3.553 <		M1										
	There is	A1											
	1 st M1	7											
	1 st M1 for some use of $\frac{\text{Row Total} \times \text{Col.Total}}{\text{Grand Total}}$. May be implied by correct E_i												
		1 st A1 for all expected frequencies correct											
	RI	B1 for both hypotheses. Must mention "state" or "finances" and "income" at leas											
	2 nd M1	Use of "relationship" or "correlation" or "connection" is B0 2 nd M1 for at least two correct terms (as in 3 rd or 4 th column) or correct expressions v											
	$2^{nd} A1$												
	3^{rd} M1												
	4^{th} A1												
		4 th A1 for a correct comment in context - must mention "state" or "finances" and " condone "relationship" or "connection" here but not "correlation". No follo e.g. "There is no evidence of a relationship between finances and income"											

Question Number	Scheme										Marks		
Q6	Distance from of site (I	0-	1	1-2	2-4	4-6	6-9	9-12					
	b-a		1		1	2	2	3	3		M1		
	No of artefacts		22		15	44	37	52	58	-			
	$P(a \le X < b)$ $228 \times P(a \le X < b)$		$\frac{1}{12}$	<u> </u>	$\frac{1}{12}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{4}$	$\frac{1}{4}$		A1		
					12	38	38	57	57		A1		
		,		-				•	•]			
	Class	O_i	E_i ($\frac{O_i - E_i)^2}{E_i}$	$\frac{O}{H}$	$\frac{2}{L_i}$						
	0-1	22	19			25.5	57						
	1-2	15	19	$\frac{16}{19} = 0.8421$			34				M1		
	2-4	44	38		= 0.9473		94						
	4-6	37	38	$\frac{1}{38}$	= 0.0263	36.0)2						
	6-9	52	57	$\frac{25}{57}$	= 0.4385	47.4	3				A1		
	9-12	58	57	$\frac{1}{57}$	= 0.0175	59.0)1						
	H_0 : <u>continuous uniform</u> distribution <u>is</u> a good fit										B1		
	H ₁ : <u>continuo</u>												
	$\sum \frac{(O_i - E_i)}{E_i}$	dM1A1											
	v = 6 - 1 = 5	B1											
	$\chi_5^2(0.05) = 1$	B1ft											
	2.75<11.070, insufficient evidence to reject H_0												
	Continuous	A1											
		12											
	1 st M1 for c	1 st M1 for calculation of at least 3 widths and attempting proportions/probs. or for 1:2											
	1 st A1 for correct probabilities												
	2 nd A1 for all correct expected frequencies												
	2^{nd} M1 for attempting $\frac{(O-E)^2}{E}$ or $\frac{O^2}{E}$, at least 3 correct expressions or values.												
	Follow through their E_i provided they are not all = 38												
	 3rd A1 for a correct set of calcs - 3rd or 4th column. (2 dp or better and allow e.g. 0.94. 3rd dM1 dependent on 2nd M1 for attempting a correct sum or calculation (must see at and +) 												
	4 th M1 for a	5											
	Contradictory statements score M0 e.g. "significant" do not reject H_0 . 5 th A1 for a correct comment suggesting that continuous uniform model is suitable.												

Questi Numbe		Scheme	Mark	.s					
Q7 ((a)	Label full time staff 1-6000, part time staff 1-4000	M1						
		Use random numbers to select	M1						
		Simple random sample of 120 full time staff and 80 part time staff	A1	(3)					
((b)	Enables estimation of statistics / errors for each strata <u>or</u> "reduce variability" <u>or</u> "more representative" <u>or</u> "reflects population structure" NOT "more accurate"							
((c)	$H_{0}: \mu_{f} = \mu_{p}, H_{1}: \mu_{f} \neq \mu_{p} $ (accept μ_{1}, μ_{2})	B1						
		s.e. $= \sqrt{\frac{21}{80} + \frac{19}{80}}, \qquad z = \frac{52 - 50}{\sqrt{\frac{21}{80} + \frac{19}{80}}} = (2\sqrt{2})$	M1,M1						
		= 2.828 (awrt 2.83)	A1						
		Two tailed critical value $z = 2.5758$ (or prob of awrt 0.002 (<0.005) or 0.004 (<0.01))	B1						
		[2.828 > 2.5758 so] significant evidence to reject H ₀	dM1						
		There is evidence of a difference in policy awareness between full time and part time staff	A1ft	(7)					
((d)	Can use mean full time and mean part time ~ Normal	B1 B1	(2)					
((e)	Have assumed $s^2 = \sigma^2$ or variance of sample = variance of population							
	(f)	2.53 < 2.5758, not significant or do not reject H ₀							
		So there is insufficient evidence of a difference in mean awareness	A1ft	(2)					
((g)	Training course has closed the gap between full time staff and part time staff's mean awareness of company policy.							
((a)	 1st M1 for attempt at labelling full-time and part-time staff. One set of correct number 2nd M1 for mentioning use of random numbers 1st A1 for s.r.s. of 120 full-time and 80 part-time 	ers.	17					
((c)	1^{st} M1 for attempt at s.e condone one number wrong . NB correct s.e. = $\sqrt{\frac{1}{2}}$							
		2 nd M1 for using their s.e. in correct formula for test statistic. Must be $\frac{\pm (52-50)}{\sqrt{\frac{p}{a}+\frac{r}{s}}}$							
		3 rd dM1 dep. on 2nd M1 for a correct statement based on their normal cv and their tes 2 nd A1 for correct comment in context. Must mention "scores" or " policy awareness of "staff". Award A0 for a one-tailed comment. Allow ft							
((d)	1 st B1 for mention of mean(s) <u>or</u> use of \overline{X} , provided \overline{X} clearly refers to full-time 2 nd B1 for stating that distribution can be assumed normal e.g. "mean score of the test is normally distributed" gets B1B1							
	(f)	M1 for correct statement (may be implied by correct contextualised comment) A1 for correct contextualised comment. Accept "no difference in mean scores".	Allow ft						
((g)	B1 for correct comment in context that implies training was effective. This must be supported by their (c) and (f). Condone one-tailed comment he	ere.						

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481

Email publications@linneydirect.com

Order Code UA024774 Summer 2010

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH

Mark Scheme (Results)

June 2011

GCE Statistics S3 (6691) Paper 1

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025 or visit our website at <u>www.edexcel.com</u>.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our **Ask The Expert** email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

June 2011 Publications Code UA028846 All the material in this publication is copyright © Edexcel Ltd 2011

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - B marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod benefit of doubt
- ft follow through
- the symbol will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- L The second mark is dependent on gaining the first mark

June 2011 Statistics S3 6691 Mark Scheme

Question Number	Scheme	Marks
1.	X_1, X_2, \dots, X_n is a random sample of size <i>n</i> , for large <i>n</i> ,	B1
	drawn from a population of any distribution with mean μ and variance σ^2	B1
	then \overline{X} is (approximately) $N\left(\mu, \frac{\sigma^2}{n}\right)$	B1
		(3
	 1st B for large sample or equivalent 2nd B for 'population of any distribution' or 'any population' 3rd B require mean or symbol and normal (parameters not required) 	

Question Number					Scheme	2			Marl	ks
2.		-				_				
(a)	Town	Α	В	С	D	E	F	G		
	<i>h</i> rank	1	5	2	3	7	4	6		
	<i>c</i> rank	4	3	2	1	6	7	5		
	d	3	2	0	2	1	3	1	M1	
	d^2	9	4	0	4	1	9	1	M1	
	$\sum d^2 = 28$								M1A1	
	$\left \begin{array}{c} \sum d^2 = 28 \\ r_s = 1 \end{array} \right $	$-\frac{6\times 28}{1}$							M1	
	= 0	7×48 9.5							A1	
										(6)
(b)	$H_0: \rho = 0,$	$H_1: \rho \neq 0$	0						B1	
	Critical val	-		857					B1ft	
	0.5<0.7857				o reject H	0			M 1	
	Councillor				-	v			A1ft	
										(4)
										10

Question Number	Scheme	Marks
	Scheme 1^{st} M1for an attempt to rank the hardship against calls 2^{nd} M1for attempting d for their ranks. Must be using ranks. 3^{rd} M1for attempting $\sum d^2$ (must be using ranks) 1^{st} A1for sum of 28 (or 84) 4^{th} M1for use of the correct formula with their $\sum d^2$. If answer is notcorrect an expression is required. 2^{nd} A1for awrt 0.5 (or -0.5) 1^{st} B1for both hypotheses in terms of ρ , H1 must be two tail. 2^{nd} B1for cv of ± 0.7857 (or 0.7143 to ft from 1-tailed H1)M1for a correct statement relating their r_s with their cv but cv mustbe such that $ cv < 1$ A1ftfor a correct contextualised comment. Must mention"Councillor" and "claim" or "hardship" and "number of calls (to the	Marks
	emergency services)" Follow through their r_s and their cv (provided it is $ cv < 1$ Condone use of "association" in conclusion for A1 Condone 'positive' in conclusion.	

Question Number		So	cheme			Mark	S
3.							
	Defect Type	D ₁	D ₂		7		
	Shift	D_1	\mathbf{D}_2				
	First Shift	47.25	15.75	63	-		
	Second Shift	56.25	18.75	75	-		
	Third Shift	46.5	15.5	62	_		
					_	N/1 A 1	
		150	50	200		M1A1	
	H_0 : Type of defect is in	ndependent of	f Shift (no asso	ciation)			
	H_1 : Type of defect is not	ot independer	nt of Shift (asso	ociation)		B1	
	III . Type of defect is in	st macpenael	it of billit (ubbe	(ciulion)			
			-				
	0	E	$\frac{(O-E)^2}{E}$	O_i^2			
				$\frac{O_i^2}{E_i}$			
	45	47.25	0.1071	42.857			
	18	15.75	0.3214	20.571			
	55	56.25	0.02777	53.777			
	20	18.75	0.0833	21.333			
	50	46.5	0.2634	53.763			
	12	15.5	0.7903	9.290		M1A1	
				,,			
	$(O D)^2$	2				A1	
	$\frac{(O-E)^2}{E}$ =1.5934 or $\frac{O}{E}$	$\frac{V_i^{-}}{I_i^{-}}$ -200=201.5	5934-200=1.593	4	awrt1.59	A1	
	E	E_i	200 11070				
	v = (3-1)(2-1) = 2					B1	
	$\chi^2_2(0.10) = 4.605$					B1ft	
	1.59 < 4.605 so insufficie	nt avidance t	o reject U			M1	
			e 0				
	Insufficient evidence to	support mana	ager's beliet /cl	aım.		A1	10
							10

Question Number	Scheme	Marks
Notes	1^{st} M1 for some use of $\frac{\text{Row Total} \times \text{Col.Total}}{\text{Grand Total}}$ May be implied by correct	
	E_i	
	1 st A1 for all expected frequencies correct	
	B1 for both hypotheses. Must mention "defect" and "shift" at least once	
	Use of "relationship" or "correlation" or "connection" is B0	
	2^{nd} M1 for at least two correct terms (as in 3^{rd} or 4^{th} column) or correct	
	expressions with their E_i	
	2 nd A1 for all correct terms. May be implied by a correct answer.(2 dp or	
	better-allow eg 0.10)	
	3 rd M1 for a correct statement linking their test statistic and their cv.	
	Must be χ^2 not normal.	
	4 th A1 for a correct comment in context - must mention "manager's	
	belief" or "shift" and "defect type" - condone "relationship" or "connection"	
	here but not "correlation". No follow through e.g. "There is evidence of a	
	relationship between shift and type of defect"	

Question Number	Scheme	Marks
4. (a)	$\overline{x} = \frac{5320}{80} = 66.5$ $s^{2} = \frac{392000 - 80 \times (66.5)^{2}}{79}$ $= 483.797$ awrt 484	M1,A1 M1A1ft A1 (5)
(b)	H ₀ : $\mu_m = \mu_{nm}$, H ₁ : $\mu_m > \mu_{nm}$ (accept μ_1, μ_2 with definition)	B1B1
	$z = \frac{69.0 - 66.5}{\sqrt{\frac{483.797}{80} + \frac{446.44}{60}}}$	M1dM1
	= 0.6807 awrt 0.681	A1
	One tailed cv 1.6449 (Probability is awrt 0.752)	B1
	0.6807 < 1.6449 (or $0.248 > 0.05$) insufficient evidence to reject H ₀	dM1
	Mean money spent is not greater with music playing.	A1ft
		(8) 13

Question	Scheme	Marks
Number		
	Notes	
(b)	No definition award B1B0.	
	1 st M1 for attempt at s.e condone one number wrong or switched 60 &	
	80.	
	2^{nd} dM1 for using their s.e. in correct formula for test statistic.	
	3 rd dM1 dep. on 2 nd M1 for a correct statement based on their normal cv and their test statistic	
	2 nd A1 for correct comment in context. Must mention "money spent" and	
	"music playing". Allow ft.	
	Critical Region for (b)	
	Standard error x z value for 2^{nd} M1	
	Standard error x 1.6449= awrt 6.04 for 1^{st} A1	
	2.5<6.04	

Question Number	Scheme								Marks	
5. (a)	Hurricanes: occur singly / are independent or occur at random /are a rare event / at a constant rate							rare	B1B1 (2)	
(b)	From dat	From data $\frac{1 \times 2 + 2 \times 5 + 3 \times 17 + + 7 \times 12}{80} = 4.4875$							M1A1 (2)	
	No of hurricanes, <i>h</i>	0	1	2	3	4	5	6	7+	
(c)	80P(X = h	0.9	4038	r=9.06	13.55	s=15.205	13.647	10.2 06	13.388	M1A1A1
	Combine to give expected frequencies >5		13.999	1	13.55	15.205	13.647	10.2 06	13.388	(3)
	Observed		7		17	20	12	12	12	
(d)	$\frac{\left(O-E\right)^2}{E}$		3.499.		0.876	1.511	0.198	0.31 5	0.143	M1
	$\frac{O_i^2}{E_i}$		3.500.		21.322	26.306	10.551	14.1 08	10.755	
	H_0 : Poisson distribution is a good fit o.e. H_1 : Poisson distribution is not a good fit o.e.								B1	
	$\sum \frac{(O_i - E_i)^2}{E_i} = 6.545 \text{ or } \frac{O_i^2}{E_i} = 86.545 - 80 = 6.545 (awrt 6.55 \text{ or})$								A1	
	6.54) v = 6 - 2 = 4 cv is 9.488 $\chi_{v}^{2}(0.05)$) (ft their v i.e.						v i.e.	B1 B1ft		
	6.545<9.4	488 s				reject H ₀ on distrib	ution			A1 (6) 13

Question	Scheme	Marks
Number		
	Notes	
(b)	M for at least 2 terms on numerator. 359/80 only award M0A0	
(c)	M for 80xPoisson probability with 4.4875 and either 2 or 4.	
	1st A1 for awrt 9.06 and 2^{nd} A1 for awrt 15.20 or 15.21	
(d)	1 st M1 for some pooling and attempting $\frac{(O-E)^2}{E}$ or $\frac{O^2}{E}$, at least 3 correct	
	expressions or values.	
	1 st B1 no value for parameter permitted	
	2 nd A1 for a correct comment suggesting that Poisson model is suitable. No ft	

advancing learning, changing lives

Question Number	Scheme	Marks
6. (a)	$L = A_1 + A_2 + + A_6$ Mean is $E(L) = 6 \times 20 = 120$ Standard deviation is $\sqrt{Var(W)} = \sqrt{6 \times 5^2} = 5\sqrt{6} = 12.247$ awrt 12.2	B1 B1 (2)
(b)	$P(L > 110) = P(Z > \left(\frac{110 - 120}{12.247}\right))$ = $P(Z < 0.8164)$ = 0.7939 (or 0.7929 using interpolation or 0.79289 by calc)	M1 A1 (2)
(c)	Let $X = 4B - \sum_{1}^{6} A_i$ E(X) = 140 - 120 = 20 $Var(X) = 16 \times 8^2 + 6 \times 5^2 = 1174$ $P(X < 0) = P\left(Z < \frac{-20}{\sqrt{1174}}\right) = P(Z < -0.583)$ = 0.2797 (or 0.2810 if no interpolation) or 0.27971 by calc.	B1 M1M1A1 M1 A1 (6) 10

Question	Scheme	Marks
Number		
	Notes	
(b)	M1 for identifying a correct probability (they must have the 110) and attempting to standardise with their mean and sd. This can be implied by the correct answer. A1 for awrt 0.794 or 0.793	
(c)	Accept ±20 for B mark. Only award for probability statement if 2 terms in var 1 st M1 for 1024, 2 nd M1 for 150 3 rd M for standardising with their mean and 2 term sd and finding probability <0.5 2 nd A1 for awrt 0.280 or 0.281	

Question Number	Scheme	Mark	S
7. (a)	H ₀ : μ =250, H ₁ : μ <250, $z = \frac{248-250}{\frac{5.4}{\sqrt{90}}}$ = -3.513 awrt - 3.51 Critical value -1.6449 -3.513 -1.6449 so sufficient evidence to reject H ₀ Manager's claim is justified.	B1 M1 A1 B1 A1	
(b)	98% CI for μ is $248 \pm 2.3263 \times \frac{5.4}{\sqrt{90}}$ = awrt (247,249) dependent upon z value awrt 2.33	M1B1 A1A1	(5)
	2.33		(4)
(c)	Hypothesis test is significant or CI does not contain stated weight. (Manager should ask the company to investigate if their) stated weight is too high o.e.	B1 B1	(2)
(d)	$P(\overline{x} - \mu < 1) = 0.98$ $\frac{1}{\frac{3}{\sqrt{n}}} = 2.3263$ $n = (3 \times 2.3263)^2 = 48.7$ Sample size 49 required.	M1 A1 dM1A1 A1	
	~		(5) 16

Question Number	Scheme	Marks
	Notes	
(a)	1 st B1 for H ₀ and for H ₁ (must be <250) They must use μ not <i>x</i> , <i>p</i> , λ or	
	\overline{x} etc	
	1^{st} M1 for attempt at standardising using 248, 250 and sd. Can accept <u>+</u> .	
	Critical region: 250-0.936=249.064 for M1A1 (and compare with 248.)	
	3^{rd} B1 for ± 1.6449 seen (or probability of 0.0002 or better)	
	2 nd A1 for a correct contextualised comment. Must mention "Manager"	
	and "claim" or "weight" and "stated weight". No follow through.	
(b)	2.3263 or better for B mark. Any z value replacing 2.3263 award M.	
(d)	1^{st} M for LHS = z value >1	
	1 st A for RHS awrt 2.33	
	2^{nd} A1 for answers in the range 48.7-48.9	
	$3^{\rm rd}$ A1 don't condone \geq	

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email publication.orders@edexcel.com Order Code UA028846 June 2011

For more information on Edexcel qualifications, please visit www.edexcel.com/guals

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

Mark Scheme (Results)

Summer 2012

GCE Statistics S3 (6691) Paper 1

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2012 Publications Code UA033146 All the material in this publication is copyright © Pearson Education Ltd 2012

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Hypothesis Tests (Final M1A1)

For an incorrect comparison (e.g. probability with z value) even with a correct statement and/or comment award M0A0

For a correct or no comparison with <u>more than one statement one of which is false</u> Award M0A0 (This is compatible with the principle above of contradictory statements being penalised)

Apply these rules to all questions

June 2012 6691 Statistics S3 Mark Scheme

Question Number	Scheme							(S
1 (a)	X	Y	Rank X	Rank Y	d	d^2		
	62	54	3	2	1	1		
	56	47	4	5	-1	1		
	87	71	1	1	0	0	M1	
	54	50	5	3	2	4	M1 M1	
	65 15	49	2 6	4 8	-2 -2	4	1011	
	13	25 30	7	8 7	-2	4		
	12	44	8	6	2	4		
		L	0	0	2	T	A1	
	$\sum d^2 = 18$ $r_s = 1 - \frac{6 \times 18}{8(64 - 1)}$	1					M1A1	
	$r_s = 1 - \frac{60000}{8(64 - 100)}$	$\frac{1}{1} = 0.7857$				awrt 0.786		(5)
	$H_0: \rho = 0$						B1	(5)
1(b)	$H_0: \rho > 0$						B1	
	Critical region	-					B1	
	(0.7857>0.642	29 sufficient ev	vidence to) reje	ct H ₀			M1	
	There is evide	nce of agreeme	ent between the	e scores award	ed by each ma	nager	A1ft	(5)
1(c)	(A and D are n	low) tied ranks	(for Manager	Y) S			B1	(0)
	(A and <i>D</i> are now) fied ranks (for Manager <i>T</i>) Average rank (awarded to <i>A</i> and <i>D</i>) and use $r_s = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}}$						B1	(2)
	NT .			·			Total 1	
1(a)	Notes1st M1for an attempt to rank score X and score Y2nd M1for attempting d ² for their ranks. Must be using ranks.1st A1for sum of 18							
			rect formula w	with their $\sum d^2$. If answer is	not correct an		
	expression is r	-		—				
1(b)		awrt 0.786	aa in tamaa af					
			es in terms of	ρ or ρ_s				
		alt hyp as give $f = 0.6420$		we tailed from	hyp)			
			(or 0.7381 if t ment relating t		• •	ust he such		
		a concer state	incht felating t	iicii ⁷ _s with th		lust be such		
	that cv <1 A1ft for a correct contextualised comment. Must mention "scores / rankings" and "manager"							
	-		heir r_s and the	eir cv (provideo	d it is cv <1			
	Use	e of "associatio	on" is A0					
1(c)	1 st B1 Tied rar 2 nd B1 Averag							

Question Number	Scheme	Marks
2(a)	Sampling frame within each species of fish in the lake impossible to obtain.	B1 (1)
2(b)	Quota sampling	B1
2(c)	Advantages: Sample can be obtained quickly Costs are kept to a minimum Administration of survey is easy Disadvantages: Not possible to estimate sampling errors Process not random	(1) B1 B1
2(d)	Surveyor may not be able to identify species of fish easily	(2)
_(0)	SpeciesQuotaTrout $\frac{1400}{2450} \times 30 = 17.14$	
	Bass $\frac{600}{2450} \times 30 = 7.35$	
	Pike $\frac{450}{2450} \times 30 = 5.51$	
	Fish are caught from the lake until the quota of 17 trout, 7 bass and 6 pike are reached.	B1B1B1
	If a fish is caught and the species quota is full, then this is ignored.	B1 (4)
		Total 8
	Notes	
2(a)	'You can't / it's very difficult to number all the fish' or equivalent	
2(c)	Correct answer to (b) required. Some detail required.	
2(d)	1 st B1 any one correct calculation seen or implied 2 nd B1 all correct to at least 1 dp 3 rd B1 for 17,7,6 4 th B1 accept equivalent statement. Require comment on what to do with 'extra fish'.	

Question Number	Scheme	Mark	s
3(a)	$(X_1, X_2, X_3,, X_n$ is a random) sample of size <i>n</i> , for <i>n</i> is large , (from a population with mean μ and variance σ^2) then \overline{X} is (approximately) Normal.	B1 B1	
3 (b)	$\overline{x} = \frac{1740000}{100} = 17400$	B1	(2)
	$\overline{x} \pm z \frac{\sigma}{\sqrt{n}}, = 17400 \pm 1.96 \times \frac{5000}{\sqrt{100}}$ [16420,18380]	M1, B1	
3(c)	\overline{X} : Normal (approx) by CLT, and normal needed to find CI.	B1,B1	(5) (2)
3 (d)	20000 above upper confidence limit (not just outside) Complaint justified.	B1ft dB1ft	(2)
3(b)	Notes Recognisable <i>z</i> value required for method. 2 nd B1 1.96 or better seen award Final A1s accept 3sf if correct expression seen. 5/5 for [16420,18380]	Total 11	

Question Number	Scheme							
4	H_0 :Egg yield and breed of chicken are independent (not associated) H_1 : Egg yield and breed of chicken are dependent (associated)							
	Egg Yield Breed	Low	Medium	High	Total	M1A1		
	Leghorn	$\frac{100 \times 36}{150} = 24$	$\frac{100 \times 84}{150} = 56$	$\frac{100 \times 30}{150} = 20$	100			
	Cornish	$\frac{50 \times 36}{150} = 12$	$\frac{50 \times 84}{150} = 28$	$\frac{50 \times 30}{150} = 10$	50			
	Total	36	84	30	150			
	0	E	$\sum \frac{(O-E)^2}{F}$	$\sum \frac{O^2}{E}$				
	22	24	0.166667	20.2		M1A1		
	52	56	0.285714	48.3]		
	26	20	1.8	33.8		_		
	14	12	0.333333	16.3		_		
	32	28	0.571429	36.6		_		
		10	3.6	1.6		_		
	$\sum \frac{(O-E)^2}{E} = 6.757 \text{ or } \sum \frac{O^2}{E} - 100 = 6.757$							
	Ы	Ľ				A1 B1B1ft		
	$v = 2, \chi_2^2(5\%) = 5.991$							
	(6.757>5.991 so sufficient evidence to) reject H_0							
	Egg yield and breed	of chicken are	dependent (assoc	ciated)		A1		
						(10) Total 10		
	Notes					1014110		
		potheses. Mus	st mention "yield	" and "breed" i	n both but			
	condone ditto marks.							
	Use of "relationship" or "correlation" or "connection" is B0							
	1st M1 for some use of $\frac{\text{Row Total} \times \text{Col.Total}}{\text{Grand Total}}$. May be implied by a correct E_i							
	1st A1 for all expected frequencies correct							
	2nd M1 for at least two correct terms or correct expressions with their E_i							
	2nd A1 for all correct terms. May be implied by a correct answer (2 sf or better) and M1 for a correct statement linking their test statistic and their are Must be t^2							
	3rd M1 for a correct statement linking their test statistic and their cv. Must be χ^2							
	not normal. 4th A1 for a correct comment in context - must mention "egg yield" and "breed of							
	4th A1 for a correct comment in context - must mention "egg yield" and "breed of chicken" - condone "relationship" or "connection" here but not "correlation". No							
	follow through e.g. "There is no evidence of a relationship between egg yield and							
	breed of chicken" is							

Question Number	Scheme	Marks	5
5(a)	$ \begin{aligned} \mathbf{H}_{0} &: \boldsymbol{\mu}_{A} = \boldsymbol{\mu}_{B} \\ \mathbf{H}_{1} &: \boldsymbol{\mu}_{A} \neq \boldsymbol{\mu}_{B} \end{aligned} $	B1	
	$z = \frac{\pm (80 - 74)}{\sqrt{\frac{100}{29} + \frac{225}{26}}}$	M1A1	
	$z = \pm 1.7247$ awrt ± 1.72 1.7247>1.6449 o.e. so reject H_0	A1 dM1	
	There is evidence of a difference in the (mean) scores of their students.	A1	(6)
5(b)	(For z=1.6, test above not significant so no evidence of a difference.) For Mr A's claim, $H_0: \mu_A = \mu_B$, $H_1: \mu_A > \mu_B$, and critical value is z=1.2816 (Both z values significant,) Mr Alan's claim supported.	B1, B1 B1	(3)
5(a)	Notes 1st M1 for attempt at s.e. (condone one number wrong) and for using their s.e. in correct formula for test statistic. 1 st A1 for correct expression for se 2nd dM1 dep. on 1st M1 for a correct statement based on their normal cv and their test statistic 3rd A1 for correct comment in context. Must mention "scores" and "students / groups/classes" Award A0 for a one-tailed comment.	Total 9	
5(b)	1 st B1 Alternative hyp should be clearly defined		

Question Number		Scheme						٢S
6(a)	Mean= $\frac{1 \times 16 + 1}{1 \times 16 + 1}$	$\frac{-2\times20++6\times}{100}$	$\frac{1}{2} = 2.91 **a_{2}$	g** 5			M1A1	(2)
6(b)	$p = \frac{2.91}{6} = 0.4$	485					B1	(2)
	0	$0.485^3 \times 0.515^3$	= 31.17				M1A1	
	$b = 100 \times 0.483$	$5^6 = 1.3(0)$					A1	(4)
6(c)	H_0 : Binomial H_1 : Binomial	is a good fit is a not a good	fit				B1	(•)
	Number of defective items	0 or 1	2	3	4	5 or 6		
	0	22	20	23	17	18	M1	
	E	12.41	24.82	31.17	22.01	9.59		
	$\sum \frac{(O-E)^2}{2} = \frac{1}{2}$	$=\frac{(22-12.41)^2}{12.41}$	$(20-24.82)^{2}$	$\frac{2}{-+}$ + $\frac{(18-9.5)}{-}$	$(59)^2 = 18998$	awrt 190	M1A1	
	-	rees of freedom	=	9.59)		B1 B1ft	
		15 so reject H_0					M1	
	Binomial is a litems in sample	not a good fit (les of size 6)	and is not a go	ood model for t	the number of	defective	A1	(8)
							Total 1	4
6(a)		Notes 1 st M At least 2 correct terms on numerator and 100 for denominator.						
6(b)	0.485 can be i							
6(c)	0.485 can be implied by at least 1 correct answer. Accept awrt 2dp for final answers							
	Clear use of Binomial and x100 required for method. Parameters in hyps award B0 1 st M1 for combining either 0 and 1 or 5 and 6 or both. Require at least 1 value in a							
	combined correct. 2nd M1 for attempting $\frac{(O-E)^2}{E}$ or $\frac{O^2}{E}$, at least 2 correct expressions or values.							
		a correct comm	L L			suitable. No ft		

Question Number	Scheme	Marks
7(a)	M : N(177, 25), F : N(163, 16) E(M - F) = 177 - 163 = 14 Var(M - F) = 25 + 16 = 41 M - F : N(14, 41) $P(M - F > 0) = P\left(Z > \frac{-14}{\sqrt{41}}\right) \text{ or } P\left(Z < \frac{14}{\sqrt{41}}\right)$ = P(Z < 2.186)	B1 M1A1 M1
7(b)	$= 0.9854 ext{ or } 0.9856 ext{ by calculator } awrt 0.985 ext{ or } 0.986$ $W = M_1 + M_2 +M_6 + F_1 + F_2 +F_4$ $E(W) = 6 \times 177 + 4 \times 163$ $= 1714$ $Var(W) = 6 \times 25 + 4 \times 16$ $= 214$ $P(W < 1700) = P\left(Z < \frac{1700 - 1714}{\sqrt{214}}\right) \text{ or } P\left(Z > \frac{1714 - 1700}{\sqrt{214}}\right)$ $= P(Z < -0.957) $	A1 (5) B1 M1 A1 M1 A1 A1 (6)
7(a)and (b)	Notes Condone reversed sds for method in (b) Accept metres: 2.14 award M1A0 in metres. 2nd M1s for identifying a correct probability and attempting to standardise with their mean and sd. Require explicit sd or accept 1156 for M1A0. This can be implied by the correct answer.	Total 11

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u> Order Code UA033146 Summer 2012

For more information on Edexcel qualifications, please visit our website <u>www.edexcel.com</u>

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

Mark Scheme (Results)

Summer 2013

GCE Statistics 3 (6691/01R)

ALWAYS LEARNING

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013 Publications Code UA037014 All the material in this publication is copyright © Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt[4]{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.
- 8. In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme.

Question Number	Scheme	Marks							
1.	Label females $1 - 100$ (or $0 - 99$) and males $1 - 300$ (or $0 - 299$)	B1							
	Using <u>random numbers</u> for <u>each group</u>								
	in range $1 - 100 (0 - 99)$ select 15 females and using $1 - 300 (\text{or } 0 - 299)$ select 45								
	males								
	Notes								
	1 st B1 for labelling\numbering\listing females and males	•							
	2 nd B1 for use of random numbers or "randomly select" in <u>each group</u> (may be impli	ed)							
	3 rd B1 for selecting the correct number of females <u>and</u> males								
	e.g. randomly select 45 males and 15 females scores 2 nd and 3 rd B marks since	randomly							
	selecting and the "each group" is implied,								
	If using systematic sampling within each strata allow 1 st B1 and 3 rd B1 (if earned) but	2 nd B0							

Question Number	Scheme	Marks
2.	$X \sim N(40, 3^2)$ $\overline{X} \sim N(40, \frac{9}{n})$ (Condone $Y \sim N(40, \frac{9}{n})$	B1
	$X \sim N(40, 3^{2}) \overline{X} \sim N(40, \frac{9}{n}) $ (Condone $Y \sim N(40, \frac{9}{n})$ $P(\overline{X} > 42) = P(Z > \frac{42 - 40}{\sqrt{\frac{9}{n}}})$ $\frac{42 - 40}{\sqrt{\frac{9}{n}}} \ge 1.6449$	M1
	$\frac{42 - 40}{\sqrt{\frac{9}{n}}} \ge 1.6449$	B1 dM1
	$n \ge 6.087$ $n = 7$	A1 [Total 5]
	1 st B1 for stating the correct distribution for \overline{X} . May be implied if correctly used in line 2 and no incorrect version seen elsew 1 st M1 for an attempt to standardise with 42, 40 and their $\sqrt{\frac{9}{n}}$, must have <i>n</i> . Allow 2 nd B1 for using $z = \pm 1.6449$ (or better) 2 nd dM1 Dep on 1 st M1 for forming an equation in <i>n</i> or \sqrt{n} . Allow "=" or "<" i.e. setting their standardised expression = their <i>z</i> value (<i>z</i> > 1.5) A1 for <i>n</i> = 7 only The A1 must follow from correct working so e.g. <i>n</i> < 6.087 leading to <i>n</i> = 7 in	±

Question Number						Schem	e					Ma	arks
3 (a)	Town	A	В	С	D	E	F	G	Н	Ι	J		
	Pop	1	2	3	4	5	6	7	8	9	10	M1	
	Empl	2	1	3	5	4	6	10	8	9	7		
	d	1	1	0	1	1	0	3	0	0	3		
	$\sum d^2 =$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $										M1A	1
	$r_s = 1 - \frac{1}{2}$											dM1	
	$=\frac{143}{165}$	$\frac{3}{5} = 0.86$	6Ġ							awrt 0.	867	A1	(5)
(b)	H ₀ : $\rho =$ CV = 0.6 in critica	5485	-		rajact E	Γ.						B1 B1 M1	
	evidence	U	0		v		lation a	nd no. o	f emplo	oyees		A1	(4)
(c)	$CV = \underline{0}$ [not in c		region /	not sigr	uificant/	do not	reject H	[]				B1	
	No evide		0	U		do not	reject n	-0]				B1	(2)
(d)	No evider Villages			-	-						-	B1 B1	
ALT	Alternate	Villages <u>rank</u> ed highly for pop' were also <u>rank</u> ed highly for the no. of employees. Alternate for part (d) if different conclusions in part (b) and part (c)										(2)	
	Data probably not (bivariate) normal therefore Spearman's coefficient is more suitable than the product moment correlation coefficient.										[Tota	al 13]	
	151 7 1	6			1 0	Notes		•	1.	•			
(a)			-				-	inst the		ions			
	2 nd M1			ng ∑d	- (must	be usin	g ranks)	ft their	ranks				
	1 st A1	for 2							N .2				
	3 rd dM1							with their	$\sum d^2$	•			
		If an	s. is not o	correct a	n expr' i	s requi	red.						
(b)						-		e one tai					nking
								h their cv	but cv r	nust be s	such that	cv <1	
	Mus	st menti		ulation"	and "no.	of emp	loyees" a	g H ₀ and "posi cv <1				A0	
(c)	1 st B1 f	or 0.63	319 2 nd	ⁱ B1 de	pes not	require	context	just no <u>p</u>	positive	correla	tion me	ntioned	
(d)	$2^{nd} B1$	no <u>line</u> for a se	<u>ear</u> relat	ionship mment	or relating	(ii) pmc to Spe	arman's		t) norma	al distril	bution		
			ot (join			-							

Quest Num		Scheme									
4	(a)	$\frac{282 \times 100}{600}$ (Do not accept 282 – 114.2 – 90.2 – 30.6 (o.e.))									
	(b) (c)	9 2.5 or better									
	(d)										
		observed expected $(O_i - E_i)^2$	black 105 100 0.25	brown 282 300 1.08	red 48 50 0.08	blonde 165 150 1.5	B1expected M1				
		$\frac{(O_i - E_i)^2}{E_i}$ $\frac{O_i^2}{E_i}$	110.25	265.08	46.08	181.5	A1				
		$ \frac{E_i}{\sum \frac{(O_i - E_i)^2}{E_i}} = 2.91 \text{or} \sum \frac{O_I^2}{E_I} - 600 = 602.91 - 600 = 2.91 (\text{awrt } 2.91) $ $ \nu = 3 $ cv is 7.815 [2.91< 7.815] so insufficient evidence to reject H ₀ or not significant There is evidence to suggest that hair colour does occur in the given ratio.									
				Notes			(9) [Total 12]				
	(d)	e.g. "hai 2 nd B1 for all 4 1 st M1 for at lea 1 st A1 for all co If awrt 2 2 nd dM1 Dep on 3 rd A1 for a co e.g. "Th	r colour in the correct expect ast 2 correct ca prect calculation .91 is seen with 1 st M1 for a correct commen- nere is evidence	Must mention hai given ratio" All ed frequencies llculations from 3 ons to at least 3s h no incorrect w orrect statement	ow use of ditto 3 rd or 4 th row f if row 4 orking award B1 linking their test st mention "hair te given model"	M1A1A1 t statistic and their cv colour" and "ratios" <u>c</u>					

Question Number	Scheme	Marks						
5 (a)	$\overline{x} = \frac{1}{2} (118.8 + 121.2) = 120$	B1						
	" their 1.6449" $\frac{\sigma}{\sqrt{n}} = 121.2 - 120$	B1 M1						
	"their 2.3263" $\frac{\sigma}{\sqrt{n}} = 2.3263 \times \left(\frac{121.2 - 120}{1.6449}\right)$ 2.3263 (or better)	B1 dM1						
	So 98% C.I. = $120 \pm 1.424 = (118.3028, 121.699)$ awrt (118, 122)	A1 (6)						
(b)	awrt (118 π ,122 π) or (371/372, 382/383)	B1ft (1)						
(c)	$P (All) = (0.98)^3 = 0.941$	M1 A1 (2)						
		[Total 9]						
	Notes	. 11						
(a)	NB in part (a) only lose one of the B1 marks for not using the percentage points table 1 st B1 for $\overline{x} = 120$ 2 nd B1 for 1.6449 or better in an attempt (could be 1.6449 $\sigma = k$ or even 1.6449 $\sigma^2 = k$) Condone strange notation for standard error (<i>E</i>) here if it is <u>used</u> correctly 1 st M1 for an attempt to find "width" or "half-width" of a 90% CI ft their <i>z</i> value (<i>z</i> > 1.5) e.g. for <i>z E</i> = 121.2 – 120 (o.e.) N.B. <i>E</i> = 0.7295 Condone missing 2 here. 3 rd B1 for 2.3263 or better in an attempt at CI. If score 2 nd B0 for using 1.64 or 1.645 allow 3 rd B1 for 2.32 or 2.33 here 2 nd dM1 for a correct attempt at "width" or "half-width" of a 98% CI ft their <i>z</i> value (<i>z</i> > 2) Dependent on 1 st M1 and ft their value or expression for s.e. A1 for lower limit in range [118, 118.35) <u>and</u> upper limit in range (121.65, 122] Answer only of awrt (118, 122) with no incorrect working seen scores 6/6/ if 1.6449 and 2.3263 are seen and 5/6 (B1B1M1B0M1A1) otherwise.							
(c)	M1 for a correct expression i.e. (0.98) ³ A1 for awrt 0.941							

Question Number	Scheme	Marks
6 (a)	Var (X) = $\frac{(a+5-a+1)^2}{12}$ [=3] $\overline{X} \sim N\left(a+2, \frac{3}{50}\right)$	M1
	$\overline{X} \sim N\left(a+2, \frac{3}{50}\right)$	A1, A1ft (3)
(b)	$17.2 - 1.96 \times \sqrt{\frac{3}{50}} < \mu < 17.2 + 1.96 \times \sqrt{\frac{3}{50}}$	B1 M1
	$17.2 - 1.96 \times \sqrt{\frac{3}{50}} < a + 2 < 17.2 + 1.96 \times \sqrt{\frac{3}{50}}$	B1
	14.7 < <i>a</i> < 15.7	A1
		(4) [Total 7]
	Notes	
(a)	M1 for a correct expression for Var(X) in terms of a or Var(X) = 3 1 st A1 for normal and correct mean must be $a + 2$ NB N(17.2,) is A0 and N(17.2, $\frac{3}{50}$) is M1A0A1	
	2^{nd} A1ft for correct Var(\overline{X}), i.e. (their "3")/50	
(b)	1 st B1 for correct use of $z = 1.96$ in an attempt e.g. $\overline{x} \pm z\sigma$ or $\overline{x} \pm z\sigma^2$	
	M1 for $17.2 \pm z \times \sqrt{\frac{3}{50}}$ where $ z > 1.5$ accept just + or just -	
	Answer of (16.7, 17.7) scores B1M1B0A0	
	2 nd B1 for either of the inequalities with $a + 2$ and any z ($ z > 1.5$) or $a = 15.2 \pm z \times$	$\sqrt{\frac{"3"}{50}}$
	A1 for awrt 14.7 and 15.7	, 20

Question Number	Scheme	Marks
	$H_0: \mu_a = \mu_b, H_1: \mu_a < \mu_b$	B1
	s.e. $=\sqrt{\frac{25^2}{100} + \frac{10^2}{150}}$, $z = \frac{67 - 60}{\sqrt{\frac{25^2}{100} + \frac{10^2}{150}}}$ $CR = 1.6449 \times \sqrt{\frac{25^2}{100} + \frac{10^2}{150}}$	M1,dM1
	$z = \pm 2.6616$ $= \pm 4.326$ (awrt 2.66/4.33)	A1
	One tailed critical value $z = 1.6449$ (or prob of awrt 0.004 (<0.05))	B1
	[Condone 0.996 if compared correctly with 0.95 for the B1]	
	2.6616 > 1.6449 so] significant evidence to reject H ₀	dM1
	There is evidence that the amount of lead present in the soil has decreased.	A1ft
		(7)
(b)	CLT enables you to assume that means are normally distributed	B1
(-)		(1)
(c)	Have assumed $s^2 = \sigma^2 \underline{\text{or}}$ variance of sample = variance of population	B1 (1)
		(1) [Total 9]
	Notes	
(a)	$1^{\text{st}} B1$ for both hypotheses in terms of μ not words.	
	Accept μ_1, μ_2 etc if there is some indication of which is which e.g $X \sim N(67, 25^2)$ implies	X is "before".
	1 st M1 for attempt at s.e condone one number wrong or mis-matched variances	
	i.e. $\sqrt{\frac{p}{q} + \frac{r}{s}}$ (3 of <i>p</i> , <i>q</i> , <i>r</i> & <i>s</i> correct) or $\sqrt{\frac{10^2}{100} + \frac{25^2}{150}}$	
	$2^{nd} dM1$ Dep on $1^{st} M1$ for using their s.e. in correct formula for test statistic. Num of $\pm (6)$	7 – 60)
	or for correct expression for CR $3^{rd} dM1$ dep. on $2^{nd} M1$ for a correct statement based on their normal cv ($ cv > 1.5$) and their normal cv ($ cv$	r test statistic
	2^{nd} A1ft for correct comment in context. Must mention "lead" or "soil" and "factory	". Allow ft
	If hypotheses are the wrong way round score A0	
	If hypotheses are not for a difference between 2 means award A0	
(b)	B1 must mention <u>mean</u> and <u>normal</u> . In words or symbols e.g. $\overline{X} \sim N($	

Question Number	Scheme	Marks
8 (a)	Let $W = D_1 - D_2$	M1
	$W \sim N(0, 2.88)^{-1}$	A1, A1
	$P(W >3) = 2 \times P(W>3)$	M1
	$= 2 \times P\left(Z > \frac{3-0}{\sqrt{2.88}}\right)$	dM1
	$= 2 \times P(Z > 1.76776)$	
	$= 2 \times (1 - 0.9616)$	
	= 0.0768 awrt 0.077	A1
		(6)
(b)	Let $T = 5C - 4D$ or $4D - 5C$ or $C - \frac{4}{5}D$ or $\frac{4}{5}D - C$	M1
	$T \sim N(\pm 4, 39.04)$ or $N(\pm 0.8, 1.5616)$	A1 A1
	$P(T < 0) = P\left(Z < \frac{0-4}{\sqrt{39.04}}\right) \text{or} P\left(Z < \frac{0-0.8}{\sqrt{1.5616}}\right)$	M1
	= P(Z < -0.64018)	
	=(1-0.7389)	A 1
	= 0.2611 awrt 0.261	A1 (5)
(c)	Let $P = D + D + D + D + D + B$	M1 (3)
	Let $Q = C + C + C + C + C + C + B$	
	$P \sim N(352, 13.64)$ and $Q \sim N(292, 8.84)$	A1, A1
	[Let $R = P - Q$] $R \sim N(\pm 60, 22.48)$	M1
	$P(R > 50) = P\left(Z > \frac{50 - 60}{\sqrt{22.48}}\right)$	dM1
	= P(Z > -2.10)	
	= 0.9821 awrt 0.982 ~ 0.983	A1
		(6)
		[Total 17]
	Notes	
(a)	Award full marks in each part for a correct answer with no incorrect workin 1^{st} M1 for explicitly defining a suitable W and attempt to find the distribution of W .	ng seen.
(a)	May be implied by sight of $N(0, 2.88)$	
	1^{st} A1 for normal and mean of 0, 2^{nd} A1 for variance of 2.88. Award M1A1A1 for N(0, 2.	.88) seen.
	2^{nd} M1 for realising need $2 \times P(W > 3)$	
	3^{rd} dM1 Dep on 1^{st} M1 for standardising with 3, 0 and their s.d. Must lead to P(Z > +v	e) (o.e.)
(L)	1 st M1 for evolution defining a suitable Thut may be implied by sight of one of these	
(b)	1^{st} M1 for explicitly defining a suitable <i>T</i> but may be implied by sight of one of these 1^{st} A1 for normal and correct mean, 2^{nd} A1 for correct variance. Accept awrt 3sf i.e.	
	2^{nd} M1 for standardising with 0 and their mean and their s.d. Must lead to P(Z < -ve) (
		,
(c)		on for P or Q
	1^{st} A1 for a correct distribution for P 2^{nd} A1 for a correct distribution for Q	
	2^{nd} M1 for attempting R and obtaining its distribution- ft their P and Q means and va	
	3^{rd} dM1 for attempting P($R > 50$) and standardising with 50 and their E(R) and their	$\sqrt{\operatorname{Var}(R)}$
	Dependent on 2^{nd} M1. Must lead to a P(Z > -ve) (o.e.)	

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u>

Order Code UA037014 Summer 2013

For more information on Edexcel qualifications, please visit our website <u>www.edexcel.com</u>

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

Welsh Assembly Government

Mark Scheme (Results)

Summer 2013

GCE Statistics 3 (6691/01)

ALWAYS LEARNING

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013 Publications Code UA037011 All the material in this publication is copyright © Pearson Education Ltd 2013

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.
- 8. In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme.

Question Number	Scheme							ks		
	Cl	holesterol Level	High	Low						
1.	High		7.6	12.4	20]	M1A	.1		
1.	Low		30.4	49.6	80		10117	1		
			38	62	100					
				(2)						
	H_0 : Cholesterol level is independent of intake of saturated fats(no association)									
	H_1 : Chol	lesterol level is no	t independent of int	ake of saturate	ed fats (associa	tion)		(1)		
	0	E	$\frac{(O-E)^2}{E}$		$\frac{O^2}{E}$					
	U	L	E		Ε					
	12	7.6	2.547 or $\frac{242}{95}$	18.947	' or $\frac{360}{19}$		dM1			
	8		1.56129 or $\frac{242}{155}$		or $\frac{160}{31}$		A1			
	26	30.4	$\frac{1.5012901}{0.636801} \text{ or } \frac{121}{190}$		5 or $\frac{845}{38}$					
		T).0	$\frac{0.390301}{310}$	36.790	$\frac{1}{62}$					
	$\sum \frac{(O-1)}{E}$	$\frac{E}{2}$ =5.1358234	$\frac{0.3903 \text{ or } \frac{121}{310}}{ \text{ or } \frac{1.2^2}{7.6} + \frac{8^2}{12.4}}$	$+\frac{26^2}{20.4}+\frac{54}{40}$	$\frac{1}{6}$ - 100 = 5.1	4 (awrt 5.14)	A1	(3)		
		1)(2-1) = 1	7.6 12.4	30.4 49.	6		B1			
		$(2^{-1}) = 1$					B1	(2)		
			nt evidence to reje	ect H [Con	done "accent	Ц , "]	M1	(2)		
			plesterol level and			11]]	A1	(2)		
	Associat	ion between en	Diesteror lever and	i saturateu ra	i make		Total			
			Note	S				20		
	Minimum working use part marks: E_i (2), Hyp (1), 5.14 (3), 3.841 (2), Conclusion									
	1 st M1	for some use o	$f \frac{\text{Row Total} \times \text{Co}}{\text{Grand Tot}}$	al. Total	y be implied	by correct E_{μ}				
	1 st A1	for all expecte	d frequencies cor	rect. Allow	M1A0 for E_{i}	rounded to i	ntegers			
	1 st B1	• •	theses. Must mer onship" or "correl				nce			
	$2^{nd} dM1$		orrect terms (as in 3				ith their	E_i		
	2 nd A1	for all correct te	1^{st} M1 Accept 2 erms. May be impli- on eg 2.54 3^{rd} A	ed by a correc	t ans.(2 dp or					
	2 nd B1	for correct de	grees of freedom	(may be imp	lied by a cv o	of 3.841)				
	3 rd M1		tement linking thei statements score				05 or >	3.5)		
	4 th A1	for a correct c condone "rela e.g. "There is	omment in contex tionship" or "cont evidence of a rela ugh. If e.g hypoth	at - must mer nection" here ationship betw	ntion "choles but not "co ween cholest	torol" and "fa rrelation". erol level and	fat inta	ake"		

Question Number				S	Scheme						Marks
2 (a)	Uni	A	В	С	D	E	F	G			
	Staff-Stu	2	4	3	5	7	1	6			
	Satisfaction	3	2	6	4	5	1	7			M1A1A1
	$\begin{bmatrix} d \end{bmatrix}$	-1	2	-3	1	2	0	-1			
	d^2 1 4 9 1 4 0 1 20										
	$r_s = 1 - \frac{6 \times 20}{7(49 - 1)}$	$\frac{0}{1} = 0.6$	542857	••••	(accep	$\frac{9}{14}$)		(8	awrt 0. 0	643)	dM1A1 (5)
(b)	H ₀ : $\rho = 0$										(5)
. ,	$H_{1:} \rho \neq 0 \ (\rho >$	· 0)									B1
	Critical value	is ±0.7	7857(±	0.7143	for a c	one taile	ed test)				B1
	0.643 <cv in<="" so="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><th></th><td></td></cv>										
	There is insuff staff-student ra				ggest a	(positiv	/e) corr	elation	betwee	en	B1ft
	stall-student la		1 Satisia	iction.							(3)
											Total 8
	at				Notes						
(a)			-				-			(at lea	ast 4 correct)
		-				$\frac{1}{100}$				of	mand manifes)
						_					ersed ranks)
									-	Depende	ent on 1 st M1)
						ct expre		-			<u>_</u>
	$3^{rd} A1$ If \sum	$\int d^2 = 2$	20 for a	wrt 0.6	43 <u>or</u> i	f $\sum d^2$	=92 for	r awrt -	- 0.643	(accep	$pt \pm \frac{9}{14}$)
(b)	$1^{st} B1$ for b	oth hyp	otheses	in term	s of $ ho$, c	one tail	H ₁ must	t be con	npatible	e with th	eir ranking
	$2^{nd} B1$ for	cv of 0	.7857	<u>or</u> 0.71	43 for	no corre one-tail th their	led test	(accep	t <u>+</u>)	worda	
	If hy 3 rd B1ft for	ypothes a corre	ses are	the wro extualis	ong way ed com	y aroun	d this m Must m	nust be	B0 but	t 3 rd B1	is possible. b. of students
	-					eir cv (p		d it is lo	v < 1		
	Do	n't insi	st on th		"positi	ive" for					
	Independent of					say the	re is su	fficient	evider	nce of .	(o.e.)
				-							eir hypotheses
						statem			-		• •
	(This m	ark is j			•				their r	s_s and the	neir cv)

Question Number	Scheme	Marks
3(a)i e.g e.g	Quota Sampling: Advantages: Fieldwork can be done quick ly, <u>or</u> administering the test is easy , <u>or</u> costs are kept to a minimum (cheap), <u>or</u> gives estimates for each course. <u>or</u> OK for large populations <u>or</u> sampling frame not required (o.e.) Disadvantages: Non-random process <u>or</u> not possible to estimate the sampling errors, <u>or</u> non response not recorded, <u>or</u> interviewer can introduce bias in cample absisted (o.e.)	B1
3(a)ii e.g.	sample choice. (o.e.) Stratified Sampling: Advantages: Can give accurate estimates as it is a random process, <u>or</u> gives estimates for each course <u>or</u> representative of [BUT not "proportional" to] the reliable percentation (a.g.)	
e.g.	the whole population. (o.e.) Disadvantages: Sampling frame required, <u>or</u> strata may not be clear as some students overlap courses <u>or</u> not suitable for large populations. (o.e.)	B1
3(b)	Total enrolments=1000 (may be implied by calculations) Leisure and Sport= $\frac{420}{1000} \times 100 = 42$	(2) B1 M1
	Information Technology= $\frac{337}{1000} \times 100 = 33.7 = 34$ Health and Social Care= $\frac{200}{1000} \times 100 = 20$ Media Studies= $\frac{43}{1000} \times 100 = 4.3 = 4$	A1
3(c)	The college's information system would be used to identify each student and which course they are enrolled on. i.e. idea of sampling frame or list for each course . Use of random numbers to select required number of students from each	(3) B1 B1
	course	(2) Total 7
	Notes	
(a)	Do not penalise for lack of context in part (a) 1 st B1 for an advantage and a disadvantage for quota sampling (must be 1 st or 1 2 nd B1 for an advantage and a disadvantage for stratified sampling (2 nd or label Do not allow opposite pairs e.g. "quicker/easier" for quota sampling and "takes a lon difficult" for stratified <u>or</u> quota "easy to use" but strat. "hard for large populations" Do not allow same reason for both e.g. "gives estimates for each course"	lled (ii))
(b)	M1 for one correct calculation, ft their "1000" A1 for 42, 34, 20 and 4 only	
(c)	 1st B1 for some mention of a suitable <u>sampling frame</u>. Need not give the specie a suitable source of list is required for all students <u>in each course</u>. 2nd B1 for mentioning use of <u>random numbers</u> or some random selection process <u>course</u>. If they are describing systematic sampling score B0 here 	

Question Number			S	cheme		Marl	ks		
4 (a)	$\overline{x} = \frac{8 \times 1.5 + 1}{100}$	$+12 \times 4$	$+13 \times 5.5 + 9 \times 7 + 8$	$\frac{\times 10}{50} = \frac{274.5}{50} = 5.49$	(*)	B1cso			
- (u)	$s^2 = \frac{8 \times 1.5^2}{5}$	² +12×		$\frac{7^2 + 8 \times 10^2}{49} - \frac{50}{49} 5.49^2,$		M1,A			
(b)									
	b = 50 - (2	.8.85 +		= 8.34 (tables) or 8	. ,	A1 A1ft	(3)		
(c)	H ₀ : Normal	distrib		H _{1:} Normal distribution		B1			
	Class	0	Ε	$\frac{O^2}{E}$	$\frac{\left(O-E\right)^2}{E}$	M1			
	0-3	8	8.56	7.4766	0.0366	1011			
	3-5	12	12.73	11.31186	0.0418				
	5-6	13	7.56	22.354497	3.9144	A1			
	6-8	9	12.68 or (12.81)	(6.32) ~ 6.38801	1.0680~ (1.13)				
	8-12	8	(8.34) or 8.47	7.556080~ (7.67)	(0.013) ~ 0.0260				
	$\sum \frac{O^2}{F} - N$	= 5.087	7~ 5.1400	2	awrt (5.09 ~ 5.14)	A1			
	v = 5 - 3 = 2			5-3 or 2 can be imp	lied by 5 991 seen)	B1			
	$\chi^2_2(0.05) =$		(10)			B1			
			ufficient evidence t	o rajact U		M1			
			in is a good fit.	o leject \mathbf{n}_0		A1	(8)		
				T .		Total	14		
(a)	Dlago for	n dana		Notes					
(a)				t least 3 products on n	1844 25 15				
	M1 for a co	orrect ex	pression with at leas	t 3 correct products on n	um or $\frac{101125}{49} - \frac{131}{49}$	49			
	or $\frac{337}{2}$	$\frac{7.245}{49}$ <u>c</u>	$\frac{1}{200} \left(\frac{7377}{200} - 5.49^2 \right)$	$\times \frac{50}{49}$ etc Allow 3sf acc	.,	т <i>у</i>			
				no incorrect working s					
(b)	1 st A1 for	a in ra	nge 12.68 ~ 12.81	the normal dist. Correct u or b in range 8.34~ 8 (but requires M1). Allo	8.47 or awrt these va	lues			
(c)	1 st B1 for	both hy	potheses. B0 if the	ey include 5.49 or 6.88	B. Condone $X \sim N(\mu, \sigma)$	σ^2) etc			
		-	-	$\frac{D^2}{E}$, at least 3 correct e					
	1 st A1 for	at leas	t 4 correct calcs - 3	r^{rd} or 4 th column. (2 dp	or better and allow		7)		
	2^{nd} A1 for	a test s	statistic that is awrt	es for the last two rows 5.09 ~ 5.14. Award N	M1A1A1 if this is ob				
				d on their test statistic ore M0 e.g. "significan		> 3.8)			
			-		- 0	halisti			
	S A1 for correct. No f	a corre t . Con	done mention of 5.4	ng that normal model is 9 or 6.88 here. Hypothes	suitable <u>or</u> manager's ses wrong way round s	cores A)		

Questio Numbe	Ncheme	Marks						
) Let $L \sim N(50, 25)$ and $S \sim N(15, 9)$							
	Let $X = L - (S_1 + S_2 + S_3)$	B1						
	$E(X) = 50 - 3 \times 15 = 5$	B1						
	$Var(X) = 25 + 3 \times 9 = 52$	M1A1						
	$P(X < 0) = P\left(Z < \frac{-5}{\sqrt{52}}\right)$	dM1						
	= P(Z < -0.693)							
	=0.244 or 0.2451 (tables) (awrt $0.244 \sim 0.245$)	A1 (6)						
()) Let $Y = L - 3S$	B1						
	$E(Y) = 50 - 3 \times 15 = 5$	B1						
	$Var(Y) = 25 + 3^2 \times 9 = 106$	M1A1						
	P(Y > 0) = P $\left(Z > \frac{-5}{\sqrt{106}}\right)$	dM1						
	= P(Z > -0.4856)							
	=0.686 or 0.6879 (tables) (awrt $0.686 \sim 0.688$)	A1						
		(6) Total 12						
	Notes							
(8) $\begin{bmatrix} 1^{\text{st}} B1 & \text{for forming a suitable variable } X \text{ explicitly seen. Do not give for L - allow L - (S + S + S) \end{bmatrix}$	-3S but						
	$2^{\text{nd}}_{\text{res}}$ B1 for E(X) = 5 (or - 5 if their X is defined the other way around)							
	1 st M1 for an attempt at $Var(X) = Var(L) + 3Var(S)$. Do not condone 5 for "25" or 3 for "9"							
	1^{st}A1 for 52 $2^{\text{nd}} dM1$ for attempting the correct probability and standardising with their mean and ad							
	2^{nd} dM1 for attempting the correct probability and standardising with their mean and sd. This mark is dependent on 1^{st} M1 so if X is not being used or wrong variance score M0							
	If their method is not crystal clear then they must be attempting $P(Z < -$							
	or							
	$P(Z > +ve value)$ i.e. their probability <u>after</u> standardisation should lead to a prob. < 0.5 $2^{nd} A1$ for awrt 0.244 ~ 0.245							
	Correct ans. only scores 5/6 (or 6/6 if 1 st B1) but must be clearly labelled as (a) or the	first answer.						
(1	1 st B1 for defining a new variable $[Y =] + (L - 3S)$. May be implied by a cor 2 nd B1 for $E(Y) = 5$ (or -5 if their Y is defined as $Y = 3S - L$)	rect variance.						
	1 st M1 for an attempt at $Var(Y) = Var(L) + 3^2 Var(S)$. Do not condone 5 for "25" or 3 for "9" 1 st A1 for 106 only							
	2^{nd} dM1 for attempting the correct probability and standardising with their mean and sd. This mark is dependent on 1^{st} M1 so if Y is not being used or wrong variance score M0 If their method is not crystal clear then they must be attempting P(Z > -ve value)							
	If their method is not crystal clear then they must be attempting $P(Z > -$	(e (arae)						
	or P(Z < +ve value) i.e. their probability <u>after</u> standardisation should lead to $2^{nd} A1$ for an awrt 0.686 ~ 0.688							

Question Number	Scheme	Marks						
6 (a)	$\mathbf{H}_{0}:\boldsymbol{\mu}_{new}-\boldsymbol{\mu}_{old}=1$	B1						
	$\mathbf{H}_1: \boldsymbol{\mu}_{new} - \boldsymbol{\mu}_{old} > 1$	B1						
	$z = \frac{7 - 5.5 - 1}{\sqrt{\frac{0.5}{60} + \frac{0.75}{70}}} = 3.62254$ (awrt 3.62)	M1 A1A1 A1						
	Critical value $z = 1.6449$ (allow <u>+</u>)	B1						
	[3.62 > 1.6449] so sufficient evidence to reject H ₀	dM1						
	Evidence that the mean yield of new variety is more than 1 kg greater than the old variety.	A1						
(b)		(9) B1 B1 (2)						
	Notes	Total 11						
	$1^{\text{st}} \& 2^{\text{nd}} B1$ for hypotheses. Accept μ_1, μ_2 or μ_A, μ_B etc if there is some indication of							
(a)	which is which e.g. $A \sim N(\mu_A, 0.5)$							
	1 st M1 for an attempt at se. Condone switching 0.5 and 0.75 $\sqrt{\frac{0.5 \text{ or } 0.75}{60} + \frac{0.5}{60}}$	0.75 or 0.5 70						
	1 st A1 for a correct expression for denominator of test statistic or 0.138 or -2^{nd} A1 for a correct numerator of test statistic (must have the -1) 3 rd A1 for awrt 3.62							
	[Allow -3.62 from numerator of $5.5 - 7 - 1$ and compatible H ₁] $3^{rd} B1$ for ± 1.6449 seen or							
	probability of 0.0002 (tables) or 0.000145(calc) [allow 0.0001] 2 nd dM1 dep. on 1 st M1 for a correct statement based on their normal cv and their test statistic 2 nd A1 for correct comment in context. Must mention "yield" <u>and</u> "varieties" or "old" and "new" <u>and</u> "1" If second B mark is B0 award A0 here							
ALT	Pooled estimate: If they calculate $s_p = \sqrt{0.41845} = 0.64688$ allow 1 st M1, 1 expression (or awrt 0.114) and 2 nd A1 if numerator correct but A0 for test statist							
(b)	1^{st} B1for mention of mean (yield) and normal (distribution) 2^{nd} B1for mention of sample (size) being large in this case							

Questio Numbe	Ncheme	Marks
7 (a) $\hat{\mu} = \bar{x} = \frac{33.29}{8} = 4.16125$ (awrt 4.16)	B1
) $\hat{\mu} = \bar{x} = \frac{33.29}{8} = 4.16125$ (awrt 4.16) $\hat{\sigma}^2 = s^2 = \frac{4.12^2 + 5.12^2 + \dots - 8 \times \bar{x}^2}{7}$	M1
	$\hat{\sigma}^2 = s^2 = \frac{141.4035 - 138.528013}{7} = 0.41078$ (awrt 0.411)	A1
(1) $\sum x = 33.29 + 32 \times 4.55 = 178.89$, (awrt 179)	(3) B1
	$\sum x^2 = "141.4035" + 31 \times 0.25 + 32 \times 4.55^2 (= 811.6335) $ (awrt 812)	M1A1
	Combined sample: $s^2 = \frac{811.6335 - \frac{178.89^2}{40}}{39} = 0.29724865$ (awrt 0.297)	M1A1
	$\frac{s}{\sqrt{n}} = \frac{\sqrt{0.297}}{\sqrt{40}} = 0.0862 $ (awrt 0.0862)	M1A1
($) \overline{x} \pm 1.96 \frac{\sigma}{\sqrt{n}} = \frac{178.89}{40} \pm 1.96 \frac{0.67}{\sqrt{40}}$	(7) M1B1
	= (4.2646, 4.67988) awrt (4.26 [or 4.265], 4.68)	A1
		(3) Total 13
	Notes	
(8) M1 for an attempt at s^2 : correct denom, clear attempt at $\sum x^2$ and ft their \overline{x}	Ans only 2/2
()	B1 for correct sum or mean or fully correct expression (accept mean = awrt 4.47) N	fay be in (c)
	1^{st} M1 for their $141.4035 + 31 \times 0.25 + 32 \times 4.55^2$ or "141.4035" + 7.75+ 662.48 (ac	cept 3sf)
	Beware: $32(0.25 + 4.55^2) + "141.4035" = awrt 812 but scores M0A0.$ 1 st A1 for a fully correct expression (all to 3sf or better) or answer only = aw	rt 812
	2^{nd} M1 for a correct expression using their values	
	3 rd M1 dependent on using a changed s^2 (not their 0.411 or 0.25) for $\frac{\sqrt{0.2}}{\sqrt{4}}$	<u>97"</u> 0
	This s^2 must be based on a <u>combination</u> of their 0.411 and 0.25 e.g. 0.	
(
	do not award for simply using 4.55 or their 4.16. Condone $\sigma = \sqrt{\text{their } 0.297}$	or their (b)
	B1 for $z = 1.96$ used in an attempt at a CI, may for example miss \sqrt{n} A1 for both limits awrt 3sf. Allow lower limit of 4.265	

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email publication.orders@edexcel.com Order Code UA037011 Summer 2013

For more information on Edexcel qualifications, please visit our website www.edexcel.com

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

Rewarding Learning

Mark Scheme (Results)

Summer 2014

Pearson Edexcel International A Level in Statistics 3 (WST03/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2014 Publications Code IA040147 All the material in this publication is copyright © Pearson Education Ltd 2014

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. Ignore wrong working or incorrect statements following a correct answer.

Question Number	Scheme									
1. (a)	165, 8									
(b)	Select <u>every 6th person</u> {having chosen the first person by}	B1								
	Selecting a random number between 1 and 6 or selecting a random number and then loop back to start when you reach the end.	dB1								
(b)(ii)	The <u>list</u> is alphabetical and <u>has not been sorted by gender</u> .									
(c)	Label male members 1-180, female members $1 - 120$	M1								
	Use random numbers to select a	M1								
	Simple random sample of <u>30 male</u> members and <u>20 female</u> members	A1								
(d)	Any one of									
	• It (a stratified sample) is <u>not biased</u> as the members are chosen randomly.									
	• You <u>can estimate</u> the <u>sampling errors</u> (for a stratified sample)									
	• It (a stratrified sample) gives <u>more accurate estimates</u> as it is a random									
	process.									
	• A quota sample may <u>be biased</u> (whereas a stratrified sample is not).									
	• It's <u>not possible</u> to <u>estimate/find</u> the <u>sampling errors</u> for a <u>quota sample</u>									
	(whereas you can for a stratified sample)									
	Notes									
(a) (b)(i)	 B1 165 followed by 8 or 008. 1st B1 For selecting every 6th (name on the list) 									
(0)(1)	 1st B1 For selecting every 6th (name on the list) 2nd dB1 <i>is dependent on the first B1 mark being awarded.</i> 									
	For idea of using random numbers to select first from 1 to 6 or 0 to 5 (o.e	1 7 8								
	or selecting a random number between 1 and 300 and then looping back when the									
	end of the list has been reached.									
(b)(ii)	B1 A comment that implies <u>the list</u> (or sampling frame) has not been sorted	by gender								
	Note B0 for "the ordered list is not truly random"									
	Note B0 for "sample does not divide the members into gender."									
(c)	1 st M1 For suitable labelling of all 180 males and all 120 females. E.g.									
	Allow labelling female members $181 - 300$. Also allow labelling male members $0 - 179$ and female members									
	either 0 to 119 or 180 to 299.									
	entiter 0 to 119 01 160 to 299.									

For use of random numbers to select males and females. For 30 males <u>and</u> 20 females (**dependent on 2nd M1 only**) A simple random sample of 30 males and 20 females scores 2nd M1 and A1.

B0 for "a stratified sample can reflect the population structure."

B0 for "estimates obtained from each of the strata."

2nd M1

A1 Note

Note

(d)

Question		Scheme	Mark	s
Number				-
2.		a continuous unform distribution over $[\alpha - 3, 2\alpha + 3]$		
(a)	$\left\{ \mathrm{E}(\overline{X}) = \right\}$	$\mu = \left\{ \begin{array}{c} \frac{2\alpha + 3 + \alpha - 3}{2} \end{array} \right.$	M1	
		$=\frac{3\alpha}{2}$. So \overline{X} is a biased estimator.	A1	
	bias $\left\{=\frac{3}{2}\right\}$	$\left(\frac{\alpha}{2} - \alpha\right) = \pm \frac{\alpha}{2}$ bias = $\pm \frac{\alpha}{2}$	B1	
	2	2		[3]
(b)	$k = \frac{2}{3}$	$\frac{2}{3}$	B1	
				[1]
(c)	$\alpha = \frac{2}{3}\overline{X} =$	$\frac{2}{3}$ $= \frac{2}{3}(8)$ $e = 2\left(\frac{16}{3}\right) + 3$ "their k" × 8 $2 \times "their \alpha" + 3$ See notes	M1	
	Max value	$a = 2\left(\frac{16}{16}\right) + 3$ $2 \times \text{"their } \alpha \text{"} + 3$	M1	
	With value	$S = 2 \begin{pmatrix} 3 \\ 3 \end{pmatrix} + S$ See notes	111	
		$=\frac{41}{3}$ $\frac{41}{3}$ or $13\frac{2}{3}$ or awrt 13.7	A1	
				[3] 7
		Notes		
(a)	M1	Using the formula $\left(\frac{a+b}{2}\right)$ or getting $\frac{3\alpha}{2}$		
	A1	$\frac{3\alpha}{2}$ and concluding. Allow A1 for $\frac{3\alpha}{2} \neq \alpha$.		
	Note	Also allow A1 for bias = $\pm \frac{\alpha}{2} \neq 0$		
(c)	1 st M1	An attempt to use the sample data given to find \overline{x} and multiply by	their k.	
		Allow full expression for \overline{x} or $\frac{\sum x}{n}$.		
	Note	1 st M1 can be implied by a correct recovery leading to $\alpha = \frac{16}{3}$		
	2 nd M1	$2 \times$ "their α " + 3 where their α is a function of the sample mean - which	h found b	у
		applying $\frac{\sum x}{n}$ from the data values given in the question.		
	Note	n^{n} 2(13) + 3 = 39 is M0M0A0		

Question Number			Scheme	Marks						
3. (a)	$H_0: \mu_A = \mu$	H_{B} H ₁ :	$\mu_A > \mu_B$	B1						
			= 4.81170448}	M1 A1						
	$z = \frac{532}{4.8}$	$\frac{-520}{117}$; =	2.4939 $\frac{\pm (532 - 520)}{"4.8117"}$	dM1;						
	1.0		awrt 2.49	A1						
			2.3263 or CR: $Z \ge 2.3263$ Critical value of 2.3263 $006 < 0.01$ or " 0.994 " > 0.99 Or a correct probability comparison.	B1						
	Conclude et that from <u>farr</u> that <u>gra</u> that	ther the <u>mean</u> n <u>farm A</u> <u>n B</u> . the <u>avera</u> <u>pefruit</u> fro n that of <u>fa</u>	t/Reject $H_0/"0.006" < 0.01/"0.994" > 0.99]$ a weight of grapefruit is greater than that of age weight of om farm A is greater arm B.arm B. er's belief is correct.	A1						
			Notes							
	B1 If μ_1, μ_2 used then it must be clear which refers to farm A and to farm B.									
	1 st M1	$25^2 - 20^2$ $25 - 20^2$								
		i.e. swapped <i>n</i> or one s.d. and one variance.								
	1 st A1	s.e. $=$	$\frac{35^2}{80} + \frac{28^2}{100}$. Or can be implied by s.e. = awrt 4.81							
	2 nd dM1	<i>is dependent upon the 1st M1.</i> You can follow through their s.e. if 1 st M1 mark has been awarded.								
	Note	You can follow through their s.e. if 1 st M1 mark has been awarded. M1A1dM1 is scored for writing $z = \pm \frac{(532 - 520)}{\sqrt{\frac{35^2}{80} + \frac{28^2}{100}}}$								
	Special Case	Special SC: M1A0M0A0 for $s = \frac{35 + 28}{28} \{-0.847\}$								
	Final A1									
		For a contextualised comment which is rejecting H_0 .								
	Contradictory statements score final A0. E.g. "significant, do not reject H_0 ".									
		1	for 2nd "M1A1B1" marks: Let $D = \overline{x}_A - \overline{x}_B$							
	$2.3263 = \frac{D-0}{4.8117} \text{dM1: dependent upon the 1st M1 for } \frac{D}{\text{their "4.8117"}} = 2.326$									
	2.5205 - 4	4.8117								
	2.5205 -	4.8117	A1: $D = awrt 11.2$ their "4.8117"							

B1:

2.3263

So, D = 11.193

Question Number					Scl	neme							Mar	rks
	Man	A	B	С	D	E	F	G	H	Ι	J			
4. (a)	Rank <i>x</i>	1	2	3	4	5	6	7	8	9	10	Attempt to rank		
	Rank w 2 7 4 3 1 9 6 5 8 10 Monipute blank both for x													
	or and for <i>w</i> .											M1		
	Man	A	B	С	D	E	F	G	H	Ι	J	(at least four		
	Rank <i>x</i>	10	9	8	7	6	5	4	3	2	1	correct).		
	Rank w	9	4	7	8	10	2	5	6	3	1	1.00 1		
	For finding the difference between													
	$\sum d^2 = 1 + 25 + 1 + 1 + 16 + 9 + 1 + 9 + 1 + 0; = 64$ each of the ranks and evaluating $\sum d^2$.												M1	
												$\sum d^2 = 64$	A1	
	$r_s = 1 - \frac{60}{100}$	<u>64)</u> : =	= 0.61	21212					U	sing 1	$-\frac{6\sum_{10}}{10}$	$\frac{\sum d^2}{99}$ with their $\sum d^2$	dM1;	
	^s 10((99) ′										$\frac{101}{165}$ or awrt 0.612	A1	
											DI			
(b)	$H_0: \rho = 0, H_1: \rho > 0$ Both hypotheses stated correctly											B1		
	Critical Value $r_s = 0.5636$ or CR: $r_s \ge 0.5636$ Critical value of 0.5636											B1		
	Either													
	• Since $r_s = 0.6121$ lies in the <u>CR</u> see notes											M1		
	 Result is <u>significant</u> Reject H₀ (condone H₁) 													
						elatior	ı betw					~		
	conclude that there is a positive correlation between systolic blood pressure and weight.Conclusion in context											A1		
(c)	Both either													
			alue r	= 0.54	494									
	 Critical Value r = 0.5494 CR: r ≥ 0.5494 													
	and either													
	• Since $r = 0.5114$ does not lie in the CR													
		sult is <u>1</u>	-										M1	
		not rej												
	Conclude th	hat the	re is <u>n</u>	o posi	tive co	rrelati	<u>on</u>				Cont	ext not required here.	A1	
(d)	Either													
		omme						"as x i	increas	ses, w	increas	-		
		1 "the i		-				a - 1 -	:	. :-		these or	B1	
		nere is ta is no					n a "th	e relat	ionshi	p 1s no	n-line	ar" equivalent.		
	- Dai	ia 18 110	n (DI-V	arrate) 110111	iai								

		Notes
4. (a)	3 rd dM1 Note	<i>is dependent on</i> 1^{st} <i>MI</i> for use of $1 - \frac{6 \sum d^2}{10(99)}$ with their $\sum d^2$ If a candidate finds $\sum d^2 = 266$, leading to $r_s = \text{awrt} - 0.612$ then award M1M1A1M1A1.
(b)	1 st B1	Both hypotheses stated in terms of ρ .
	M1	For a correct statement relating their r_s ($ r_s < 1$) with their c.v. where their c.v. < 1
	A1	For a contextualised comment which is rejecting H_0 , which must mention " <u>positive</u> <u>correlation</u> ", " <u>blood pressure</u> " and " <u>weight</u> ". (Use of "association" is A0.) Follow through their r_s with their c.v. (provided their c.v. < 1)
	Two-tailed test	Applying a two-tailed test scores a maximum of B0B1M1A0
		So Award SC B0B1 for $H_0: \rho = 0$, $H_1: \rho \neq 0$ followed by critical value $r_s = (\pm) 0.6485$ and allow access to the M1 mark only.

Mar			neme	So						
B1	H_0 : There is no association between type of drink and gender (independent)Correct H_1 : There is an association between type of drink and gender (dependent)hypotheses									
	Some attempt at (Row Total)(Column Total)	Total	Hot Chocolate	Coffee	Tea	Expected				
M1	(Grand Total)	94	13.16	34.31	46.53	Male				
	Can be implied by at least one correct E_i to 1d.p.	106	14.84	38.69	52.47	Female				
+	All expected	200	28	73	99	Total				
A1	frequencies are correct. Condone exact fractions. At least 2 correct terms for									
dM1	$\frac{(O-E)^2}{E} \text{ or } \frac{O^2}{E} \text{ or correct}$	<u></u>		$\frac{(O-E)}{E}$	Expected	Observed				
	expressions with their E_i .		69.825	2.3559	46.53	57				
	Accept 2 sf accuracy for the dM1 mark.		19.702	2.0127	34.31	26				
	At least 5 correct		9.1945	0.3545	13.16	11				
	$\frac{(O-E)^2}{E}$ or $\frac{O^2}{E}$ terms to		33.619	2.0892	52.47	42				
A1			57.094	1.7849	38.69	47				
	either 2 dp or better.		19.474	0.3144	14.84	17				
	Allow truncation.	0	208.911	8.9116	Totals					
dM1 A1	For applying either $X^{2} = \sum \frac{(O-E)^{2}}{E} \text{ or } \sum \frac{O^{2}}{E} - 200 = 8.9116$ $\sum \frac{(O-E)^{2}}{E} \text{ or } \sum \frac{O^{2}}{E} - 200$ 8.9 or awrt (8.88 - 8.91)									
B1	v = (2-1)(3-1) = 2 $v = 2$									
B1ft	5.991 or ft $\chi^2_{\text{their }\nu}(0.05)$	$\chi_2^2(0.05) = 5.991 \implies CR: X^2 \ge 5.991$ 5.991								
	[in the CR/significant/Reject H ₀]									
A1	conclude that there is an association between type of <u>drink</u> preferred and <u>gender</u> . (or they are not independent.) A correct conclusion in context which is based on <i>their</i> χ^2 -value and <i>their</i> χ^2 -critical value.									
B1	Critical value of 10.597).597	R : $\mathbf{X}^2 \ge 1$	$10.597 \Rightarrow 0$	$\chi^2_2(0.005) = 1$				
						[not in the CF				
	ink preferred	type of dri	- 0		-	Either				
B1	been rejected Any one of these.		endent).	y are indep	ender (or th	and g				
					rt (a)).	in pa				

D	٨	Л	т
Г	•	//	I

		Notes
5. (a)	1 st B1	For both hypotheses. Must mention "drink" and "gender" or "sex" at least once.
	_	Use of "relationship" or "correlation" or "connection" is B0.
	$2^{nd} dM1$	Dependent on the first method mark.
		At least 2 correct terms (as in 3^{rd} or 4^{th} column) or <i>correct expressions</i> with their E_i
	2 nd A1	All correct terms to either 2 d.p. or better. Allow truncated answers.
	3 rd dM1	Dependent on the second method mark.
		For applying either $\sum \frac{(O-E)^2}{E}$ or $\sum \frac{O^2}{E} - 200$
	3 rd A1	8.9 or awrt (8.88 – 8.91)
	2 nd B1	v = 2 This mark can be implied by a correct critical value of 5.991
	Note	If 8.9 or awrt (8.88 – 8.91) is seen (from a calculator) without the expected frequencies
		stated then award special case M0A0M1A1M1A1.
	Final A1	Dependent on the third method mark.
		A correct contextualised conclusion which is rejecting H_0 .
		Must mention "drink" and "gender" or "sex".
		No follow through. If e.g. hypotheses are the wrong way round A0 here.
	Note	Contradictory statements score A0. E.g. "significant, do not reject H_0 ".
	Note	Condone "relationship" or "connection" here but not "correlation".
		e.g. "There is evidence of a relationship between grades and gender"
	Note	Full accuracy gives $X^2 = 8.911619$ and p-value 0.0116 to 0.0117

Question Number		Scheme				Mar	·ks	
6. (a)	$\hat{p} = \frac{0(2) + 1(21) + 2(43)}{8(2+21+45+4)}$	5) + 3(42) + 4(12 42 + 12 + 3) or 8	$\frac{23}{(125)} + \frac{5(3)}{10} = \frac{3}{10}$	$\left.\frac{00}{000}\right\} = 0.3(*)$	Answer is given. See notes.	M1 A	1cso [2]	
(b)	$r = 125 \times {}^{8}C_{3}(0.3)^{3}(0.7)^{5} \{= 31.76523\} \text{ (formula)}$ or $r = 125 \times (0.8059 - 0.5518) \{= 31.7625\} \text{ (tables)}$ $s = 125 - (7.21 + 24.71 + 37.06 + \text{their } r + 17.02 + 5.83) \{= 1.40477 \text{ or } 1.4075\}$							
	or $s = 125 \times (1 - 0.988)$ r = 31.76523 or $31.762s = 1.40477$ or 1.4075	7) {=1.4125} 25 or 31.7575		r = awrt 31.77	7 or $r = awrt 31.76$ 40 or $s = awrt1.41$	A1 A1		
(c)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \text{Comb} \\ E_i \\ \hline 7.21 \\ 24.71 \\ 37.06 \\ 31.77 \\ (31.76) \\ 17.02 \\ \hline 7.23 \\ (7.24) \end{array}$	$ \frac{(O-E)^2}{E} 3.7648 0.5570 1.7011 3.2941 (3.3016) 1.4806 2.4748 (2.4831) $	$ \frac{O^2}{E} 0.5548 17.8470 54.6411 55.5241 (55.5416) 8.4606 1.2448 (1.2431) $	M1 M1	[3]	
	$X^{2} = \sum \frac{(O-E)^{2}}{E} \text{ or } \sum \frac{O^{2}}{E} - 125 ;= \text{ awrt } 13.3 \qquad \sum \frac{(O-E)^{2}}{E} \text{ or } \sum \frac{O^{2}}{E} - 125 ;= \text{ awrt } 13.3 \qquad \sum \frac{(O-E)^{2}}{E} \text{ or } \sum \frac{O^{2}}{E} - 125 ;= 0.5 ;= $							
	v = 6 - 1 - 1 = 4 $\chi_4^2(0.05) = 9.488 \implies C$ $H_0: \text{ Binomial distribut}$ $H_1: \text{ Binomial distribut}$	ion is a good(or s		where $k = n - (\text{or fit})$.	awrt 13.3 see notes for their $\chi_k^2(0.05)$, -1-1 from their <i>n</i> . Correct hypotheses	A1 B1 ft B1 B1		
	[in the CR/significant/Reject H_0] Binomial distribution is not a suitable model. A correct conclusion (context not required here) which is based on <i>their</i> χ^2 -value and <i>their</i> χ^2 -critical value							
(d)	 Following from a correct <i>p</i> is not constant employer's belies 			ent conveying eithe	2 7	B1	[1] 14	

		Notes
6. (a)	M1	Must show clearly how to get either 300 or 1000.
	A1 cso	Showing how to get <u>both</u> 300 and 1000 and reaching $p = 0.3$
(b)	M1	For any correct method (or a correct expression) for finding either r or s.
	A1	r = awrt 31.77 or $r = $ awrt 31.76
	A1	s = 1.4 or awrt1.40 or $s = awrt1.41$
(c)	1 st M1	For an attempt to pool 5 failed tasks and ≥ 6 failed tasks ONLY.
	Note	Give 1 st M0 for pooling 0 failed tasks and 1 failed task.
	2 nd M1	For an attempt at the test statistic, at least 2 correct expressions/values
		(to awrt 2 d.p. or truncated 2 d.p.)
	3 rd dM1	Dependent on the second method mark.
		For applying either $\sum \frac{(O-E)^2}{E}$ or $\sum \frac{O^2}{E} - 125$
	1 st A1	awrt 13.3
	1 st B1ft	For their evaluated $n - 1 - 1$. i.e. realising that they must subtract 2 from their n.
	2 nd B1	For a correct ft for their $\chi_k^2(0.05)$, where $k = n - 1 - 1$ from their <i>n</i> .
	3 rd B1	Must have both hypotheses and mention Binomial at least once.
		Inclusion of 0.3 for p in hypotheses is B0 but condone in conclusion.
	Final A1	Dependent on the 2 nd and 3 rd Method marks only.
		A correct conclusion (context not required) which is rejecting H_0 .
	Note	No follow through on their hypotheses if they are stated the wrong way round.
	Note	Contradictory statements score A0. E.g. "significant, do not reject H_0 ".
	Note	Condone mentioning of Bin(8, 0.3) in conclusion
	Note	Full accuracy gives a combined expected frequency of 7.245956, $\frac{(O-E)^2}{E} = 2.4880$,
		$\frac{O^2}{E} = 1.2421, X^2 = 13.28333$
	Note	p-value for the test is 0.0099 to 0.0100
	Note	No combining gives $X^2 = 13.58$
	Note	Combining 0/1 and $4/5/\ge 6$ gives $X^2 = 11.02$

Question Number	Scheme	Marks		
7. (a)	$X = 4Y - 3W$, $Y \square N(40, 3^2)$, $W \square N(50, 2^2)$; Y, W are independent.			
	$ \{ E(X) = 4E(Y) - 3E(W) = 4(40) - 3(50) \} \Rightarrow E(X) = 10 $ $ E(X) = 10 \text{ (seen or implied)} $ $ Var(X) = 16 Var(Y) + 9 Var(W) $ $ \{ Var(X) = 16(9) + 9(4) \} \Rightarrow Var(X) = 180 $ $ \{ So \ X \square N(10, 180) \} $ $ E(X) = 10 \text{ (seen or implied)} $ $ Either \ (4^2) Var(Y) \text{ or } + (3^2) Var(W) $ $ For adding the variance $ $ Var(X) = 180 $ $ Var(X) = 180 $) M1 s M1		
	$ \{P(X > 25) = \} P\left(Z > \frac{25 - 10}{\sqrt{180}}\right) $ Standardising (±) with their mea and their standard deviatio = P(Z > 1.11803) awrt ± 1.1 = 1 - 0.8686	n		
	$= 0.1314 \text{ (or } 0.131777) \qquad \text{awrt } 0.131 \text{ or awrt } 0.13$	2 A1 [7		
(b)	$A = \sum_{i=1}^{3} Y_i , \ C \square \ N(115 , \sigma^2); \ P(A - C < 0) = 0.2; \ A, \ C \text{ are independent.}$ $\{E(A - C) = 3E(Y) - E(C) = 3(40) - (115)\} \Rightarrow E(A - C) = 5 \qquad E(A - C) = 5$ $Var(A - C) = 3Var(Y) + Var(C) \qquad 3Var(Y) \text{ and } a + .$ $\{Var(A - C) = 3(9) + \sigma^2\} \Rightarrow Var(A - C) = 27 + \sigma^2 \qquad Var(A - C) = 27 + \sigma^2$	•• M1		
	$\{\text{So } A - C \square \text{ N}(5, 27 + \sigma^2) \}$ $\{P(A - C < 0) = 0.2 \} \implies P\left(Z < \frac{-5}{\sqrt{27 + \sigma^2}}\right) = 0.2$ $\text{Standardising } (\pm) \text{ with their mean and their standard deviation}$			
	$\frac{-5}{\sqrt{27 + \sigma^2}} = k \ (= -0.8416)$ which is in terms of σ^2 and setting the result equal to k where $ k $ is in the interval [0.84, 0.85] ± 0.8416 or awrt ± 0.8416	, M1		
	Correct equation . See note			
	$\sigma^{2} = \left(\frac{-5}{-0.8416}\right)^{2} - 27 \implies \sigma^{2} = \dots$ Squaring and rearrangin leading to a positive value for σ^{2}	g dM1		
	$\sigma^2 = 8.2962$ (= 8.4308 from using -0.84) awrt 8.3 or awrt 8. (= 8.2945 from calculator, so need awrt 8.29 for full marks if no prior working is shown.)			
(a)	NoteCondone applying reversed variances, e.g. $16(4) + 9(9)$ for the first 2 method markNoteVar(X) = 180 with no working gets M1M1A1NoteVar(X) = 48 with no working gets M0M1A0NoteVar(X) = 108 with no working gets M1M0A0NoteVar(X) = 24 with no working gets M0M0A0			
(b)	2 nd M1 Allow $\frac{\pm \text{ their } E(A-C)}{\sqrt{\text{their } Var(A-C)}} = k$, where $ k $ is in the interval (0.84, 0.85). 2 nd B1 For either -0.8416 or 0.8416			
	2nd A1 E.g. Allow $\frac{-5}{\sqrt{27 + \sigma^2}} = [-0.85, -0.84]$ or $\frac{5}{\sqrt{27 + \sigma^2}} = [0.84, 0.85]$			
	3 rd M1 Dependent on the 2 nd M1 mark being awarded.			

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

Mark Scheme (Results)

Summer 2014

Pearson Edexcel GCE in Statistics 3R (6691/01R)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2014 Publications Code UA040138

All the material in this publication is copyright © Pearson Education Ltd 2014

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- C or d... The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

Question Number				S	cheme					Marks
1. a)	Car model Sales rank Fuel efficiency rank d ²	A 8 8 0	B 6 1 25	C 1 5 16	D 5 6	E 4 2 4	F 7 7 0	G 2 4 4	H 3 3 0	M1
	N 42 F0									M1A1
	$\sum d^2 = 50$		$r_{s} = 1 - 1$	$-\frac{6\Sigma}{8(64)}$	$\frac{d^2}{(-1)} =$	$1 - \frac{6}{8}$	× 50 × 63			M1
			r _s	$=\frac{204}{504}$	= 0.40	476		av	vrt 0.405	A1
b)	$H_0: \rho_s = 0$ 1 tail critical				$\rho_{\rm s}$ or $\rho_{\rm s}$))				(5 B1 B1
	Test value is No significan	not in	critical	region						M1A1ft
c)	Underlying (b	oivaria	ate) Nor	mal dis	stributio	on				(4 B1 (1
d)	Evidence doe mean< media		~ ~			ution si	nce			B1
										(1 (11 marks

|--|

	Notes				
a)	M1 for attempting to rank at least one set of data				
	A1 for at least one set of data ranked correctly(NB this mark comes after 2 nd M1)				
	M1 for attempting Σd^2				
	M1 for correct use of formula for r_s				
b)					
,	B1 for H_0 and H_1 correct (condone \leq for H_0)				
	2^{nd} B1 allow 0.7381 if their H ₁ : $\rho_s \neq 0$				
	M1 for correct statement relating their test statistic and critical value				
	A1ft their test statistic, H_1 and critical value but must be in context.				
c)	B1 require Normal distribution, ignore additional assumptions				
d)	B1 require not Normal and valid reason				

Question Number	Scheme	Marks
2)	Expected value = $\frac{50 \times 74}{200}$ = 18.5	B1 cso
(a) (i) (ii)	χ^2 contribution = $\frac{(27-18.5)^2}{18.5}$ = 3.905405405 = 3.91 to 3sfs	B1 cso
(b)	H ₀ : users age and main mobile phone use are independent/ no association between users age and main mobile phone use H ₁ : users age and main mobile phone use are not independent/ some association between users age and main mobile phone use	(2) B1
	v = 4	B1
	Critical value $\chi^2 = 9.488$	B1ft
	Test statistic is in critical region therefore significant evidence to reject H_0 and accept H_1 .	M1
	Evidence at 5% level that age and main phone use are not independent.	A1ft
		(5) (7 marks)
	Notes	
(b)	$3^{\rm rd}$ B1 ft on their value of ν	
	M1 for attempt to compare test statistic and their critical value	
	A1 ft on test statistic and critical value but must be comment in context. (A0 if hypotheses are the wrong way around)	

Question Number	Scheme	Marks
3) (a)	P(S > 2C) = P(S - 2C > 0)	B1
	$E[S - 2C] = 4.9 - 2 \times 2.5 = -0.1$	M1A1
	$Var(S - 2C) = 0.64 + 4 \times 0.16 = 1.28$	M1, M1
	$P(S-2C > 0), = P(Z > \frac{00.1}{\sqrt{1.28}})$	
	= P(Z > 0.08838)	A1
	=0.4641 (tables), or 0.4648 (calculator) accept awrt 0.464 or 0.465	(6)
	Let $T = S_1 + S_2 + \ldots + S_{100}$	
(b)	$E[T] = 100 \times 4.9 = 490$	M1A1
	$Var(T) = 100 \times 0.64 = 64$	A1
	$P(T < 500) = P(Z < \frac{500 - 490}{\sqrt{64}})$	M1
	= P(Z < 1.25)	A1
	= 0.8944	(5)
		(11 marks)
	Notes	
(a)	1 st M1 for \pm 4Var(<i>C</i>) 2 nd M1 for P (<i>S</i> – 2 <i>C</i> >0) 3 rd M1 ft their expectation and variance but not if Var(<i>S</i> – 2 <i>C</i>) is negative. (Should lead to P(<i>Z</i> > +ve)	
(b)	1 st M1 for attempt to find mean or variance of total	
	1 st A1 either correct	
	2^{nd} A1 both correct 2^{nd} M1 for standardising using 500, their mean and their sd leading to $P(Z < +ve)$ o.e.	
	Sample mean, $\bar{x} = \frac{660 + \alpha}{5} = 132 + \frac{\alpha}{5}$	

Question Number	Scheme	Marks
4)	Test statistic, $z = \frac{132 + \frac{\alpha}{5} - 160}{\frac{6}{\sqrt{5}}}$	M1A1ft
	Critical z values is 1.6449	B1
	Therefore the test statistic is significant if	
	$\frac{\frac{132 + \frac{\alpha}{5} - 160}{\frac{6}{\sqrt{5}}} > 1.6449$	M1
	Therefore	
	$132 + \frac{\alpha}{5} - 160 > 1.6449 \times \frac{6}{\sqrt{5}}$	
	$\alpha > 5\left(1.6449 \times \frac{6}{\sqrt{5}} + 28\right)$	
	$\alpha > 162.0686493$	A1
	Accept awrt 162.1	
		(6)
		(6 marks)
	Notes	
	1^{st} A1 ft on their \bar{x} 1^{st} B1 given for 1.6449 seen (condone sign)	
	3 rd M1 <u>inequality</u> using their test statistic, accept incorrect signs for M1	

PMT		
		-
	Question Number	
	Number	
	5)	c 2

Question Number	Scheme	Marks
5)	$S_{\rm E}^{\ 2} = \frac{1}{n-1} \left(\sum x^2 - \frac{(\sum x)^2}{n} \right) = \frac{1}{119} \left(956909 - \frac{10650^2}{120} \right)$	M1
(a)	$=\frac{11721.5}{119}=98.5$	A1 (2)
(b)	$ H_0: \ \mu_F = \mu_{E,} \\ H_1: \ \mu_F \neq \mu_{E,} $	B1
	$\bar{x}_E = \frac{10650}{120} = 88.75$ and $\bar{x}_F = \frac{6510}{70} = 93$	M1
	Test statistic, $z = \frac{93-88.75-0}{\sqrt{\frac{151}{70} + \frac{98.5}{120}}} = 2.4627 \dots$	M1A1
	Critical values, $z = (\pm)2.5758$	B1ft M1
	Test stat is not in critical region Insufficient evidence to reject H_0 at 1% level No significant evidence of a difference in mean lengths of English and French films	A1ft (7)
(c)	By CLT we can assume that the mean of a large sample has a Normal distribution	B1 (1)
(d)	On a list, label English films 1 – 724 and French films 1-473 (oe)	B1
	Use random number table/generator to select	
	$\frac{724}{724+473}$ × 190 = 115 English films and	M1A1
	$\frac{473}{1197} \times 190 = 75$ French films	(3)
		(13 marks)

	Notes	
	Alternative	
(a)	$S_{\rm E}^{\ 2} = \frac{n}{n-1} \left(\frac{\sum x^2}{n} - \bar{x}^2 \right) = \frac{120}{119} \left(\frac{956909}{120} - 88.75^2 \right) = 98.5$	
(b)	1^{st} B1 needs both H ₀ and H ₁ , can be in words	
	2^{nd} B1ft on their H ₁	
	1 st M1 for attempt @ both means (\overline{x}_{E} may be in (a))	
	2^{nd} M1 for attempt at correct test statistic, ft their values	
	3 rd M1 for attempt to compare their test stat and critical values	
	A1 ft on their test and critical values but must include comment in	
(\cdot)	context	
(c)	Require mention of mean of E or F and normal distribution	
(d)	M1 requires use of <u>random numbers</u> and attempt to find correct sample	
	sizes	
	A1 both 115 and 75 found.	

Question Number	Sch	eme	Marks	
6)	Independence of each occurrence (of a fake coin)			
(a)	Constant probability for each occurrence (of a fake)			
			(2)	
(b)	$r = 150 \times P(X = 2) = 150 \times \binom{20}{2} \times 0.05^2 \times 0.95^{18}$			
	<i>r</i> = 28.3015	awrt 28.3	A1	
	s = 150 - (53.8 + 56.6 + 28.3 + 8.9)	= 2.4	A1ft	
			(3)	
(c)	H ₀ : Bin(20, 0.05) is a suitable mode H ₁ : Bin(20, 0.05) is not a suitable m		B1	
	Combining last two groups			
		≥3		
	Observed frequency	19	M1	
	Expected frequency	11.3		
	v = 4 - 1 = 3		B1	
	Critical value, $\chi^2 (0.05) = 7.815$ (a)	ccept 9.488 if their $v = 4$)	B1ft	
	Test statistic, $\sum \frac{(O-E)^2}{E} = \frac{(43-53.8)^2}{53.8}$	$+\frac{(62-56.6)^2}{56.6}+\cdots$	M1	
	= 2.168+0.515+0.186+5.246			
	= 8.117 (accept 10.16 if groups not combined)			
	In critical region, sufficient evidence to reject H_0 , accept H_1			
	Significant evidence at 5% level to reject the manager's model		A1ft	

Question Number	Scheme	Marks
(d)	 v = 4 - 2 = 2 4 classes due to pooling 2 restrictions (equal total and mean/proportion) 	B1 B1 (2)
(e)	H ₀ : Binomial distribution is a good model H ₁ : Binomial distribution is not a good model	B1
	Critical value, $\chi^2 (0.05) = 5.991$	B1
	Test statistic is not in critical region, insufficient evidence to reject H_0 Accept the assistant manager's model for the number of fake coins per bag.	B1 (3)
		(17 marks)
	Notes	
(b)	M1A1 for one of <i>r</i> or <i>s</i> correct A1ft for other value if using 150 and answer must be >0	
(c)	1^{st} B1 can be in words but must include $p = 0.05$	
	$3^{\rm rd}$ B1 ft on their ν	
	Test statistic alternative method	
	Test stat = $\sum \frac{O^2}{E} - 150 = \frac{43^2}{53.8} + \frac{62^2}{56.6} + \dots - 150 = 8.117 \dots$ 1 st A1 ft if their groups not combined 2 nd A1 ft their test and critical values but must be comment in context e.g. mention of "manager's model" <u>or</u> "fake coins"	
(d)	1^{st} B1 evidence that pooling is required 2^{nd} B1 must have correct reasons for restrictions.	

Question Number	Scheme	Marks
7) (a) (i)	$\bar{x} = \frac{10.01 + 9.97 + 9.93 + \dots}{8} = 9.9775$	M1
	95% CI $\bar{x} \pm 1.96 \times \frac{0.08}{\sqrt{8}}$	B1M1
	95% CI for μ (9.92, 10.03)	A1
		(4)
(ii)	10.00 is within confidence interval so accent that nump may be	B1
(II)	10.00 is within confidence interval so accept that pump may be performing correctly (although sample mean is low).	(1)
(b)	Upper limit of CI is $9.96 + 1.6449 \times \frac{0.08}{\sqrt{n}} < 10.00$	B1, M1A1ft
	$\frac{1.6449 \times 0.08}{\sqrt{n}} < 0.04$	
	$\sqrt{n} > \frac{1.6449 \times 0.08}{0.04}$	M1
	n > 10.82 therefore minimum $n = 11$	A1 cao
		(5)
		(10 marks)

Notes(a)
(i) 1^{st} M1 attempt to find sample mean
B1 for correct z value
A1 limits correct to 2 decimal places (or more)(b)B1 for correct z value
 1^{st} M1A1, ft their z value

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

Mark Scheme (Results)

Summer 2014

Pearson Edexcel GCE in Statistics 3 (6691/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2014 Publications Code UA040135 All the material in this publication is copyright © Pearson Education Ltd 2014

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- C or d... The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

Question Number	Scheme	Marks
1(a)	(This is a sample where) every (possible) sample (of size <i>n</i>) has an equal chance of being chosen.	B1
		(1)
(b)	'When it is impossible to provide a sampling frame ' or a correct example with an indication	B1
	of sampling frame being impossible.	
		(1)
(c)(i)	A list/register of all the students.	B1
(ii)	Number the students (from 0 to 74, 1 to 75 etc.)	B1
	Using the random no. table read off the nos. and identify or select the students allocated	B1
	those nos.	
		(3)
		Total 5
	Notes	
(a)	Require all / each / every etc sample and same/equal etc chance / probability etc for B1	
(b)	Require impossible / no / doesn't exist etc and sampling frame for B1	
(c)(i)	Require list/register etc and all/every/75 etc students for B1	
	List of 8 students is B0	
(ii)	First B1 accept 'in the corresponding position' o.e. if numbering omitted	
	Second B1 require both for mark.	

Question Number	Scheme	Marks
2a(i)	Only contains known data / function of data only / no population parameters	B1
	therefore it is a statistic	B1d
(ii)(iii)	(ii) and (iii) contain unknown parameters / population parameters / μ and / or σ	B1
	therefore it is not a statistic .	B1d
		(4)
(b)	$(E(\frac{3X_1-X_{20}}{2}) = \frac{3\mu-\mu}{2} =) \mu$	B1
	$(E(\frac{3X_1 - X_{20}}{2}) = \frac{3\mu - \mu}{2} =) \mu$ $Var(\frac{3X_1 - X_{20}}{2}) = \frac{9\sigma^2 + \sigma^2}{2^2}$ $= \frac{5\sigma^2}{2}$	M1
	$=\frac{5\sigma^2}{2}$	A1
		(3)
		Total 7
	Notes	
(a)(i)	First B1 for known / no unknowns o.e. in (i)	
	Second B1 dependent on first B1 for 'Yes' / is a statistic o.e. in (i)	
	Third B1 for unknowns o.e. in both (ii) and (iii)	
	Fourth B1 dependent on third B1 for 'No' / not a statistic o.e. in both (ii) and (ii)	
(b)	B1 for μ	
	M1 for some squaring on numerator or denominator and must add on numerator	
	A1 for $\frac{5\sigma^2}{2}$ o.e.	

Question Number						S	cheme		
3							Happiness		•
					Not happy	F	Fairly happy		
			Female		13.51		41.77		
	Gende	er	Male		8.49		26.23		
					er are independ er are not indep				
		O	iness and get	E			(0-E)		
							E		
	9	9		13	.51		1.508		
		43		41	.77		0.0361		
		34			0.71		0.351		
		13		8.4			2.402		
		25		26	5.23		0.0575		
		16			.29		0.560		
	$\sum \frac{(O)}{(O)}$	$\frac{-E}{E}$	$(\frac{E}{2})^2 = 4.91$	0	$r \sum \frac{O^2}{E} - N =$	=144	4.91-140 =	4.9	
	v = (3)	-2	$\left(2-1\right)=2$	2					
	$\sum \frac{(O)}{(O)}$	$\frac{-E}{E}$	(2-1) = 2 $\frac{2}{2} = 2$ $\frac{2}{2} = 2$ 						

-	H_1 : Happiness and gender are not independent/ associated						
1	0	E	$(0-E)^2$	0^{2}	dM1		
			\overline{E}	\overline{E}			
	9	13.51	1.508	5.996			
	43	41.77	0.0361	44.264			
	34	30.71	0.351	37.637			
	13	8.49	2.402	19.915			
	25	26.23	0.0575	23.829	A 1		
	16	19.29	0.560	13.274	A1		
$\Sigma^{\underline{(}}$	$\sum \frac{\left(\overline{O-E}\right)^2}{E} = 4.91 \text{or } \sum \frac{O^2}{E} - N = 144.91 - 140 = 4.91$						
v = (v = (3-2)(2-1) = 2						
$\Sigma^{\underline{(}}$	$\nu = (3-2)(2-1) = 2$ $\sum \frac{(O-E)^2}{E} < 5.991$						
4.91 < 5.991 so 'insufficient evidence to reject H0' or 'Accept H0'							
No association between gender and happiness.							

Very happy

30.71

19.29

Marks

M1

A1

		10tai 10
	Notes	
	1^{st} M1 for some use of $\frac{Row Total \times Column Total}{Grand Total}$. May be implied by at least 1 correct <i>Ei</i>	
	1 st A1 awrt 13.5, 41.8, 30.7, 8.5, 26.2 and 19.3 Allow M1A0 for <i>Ei</i> rounded to integers	
	1 st B1 for both hypotheses. Must mention "happiness" and "gender" at least once.	
	Use of "relationship" or "correlation" or "connection" is B0	
	2^{nd} dM1 for at least 2 correct terms (in 3^{rd} or 4^{th} columns) or correct expressions with their <i>Ei</i>	
	Dependent on 1st M1. Accept 2sf accuracy for the M mark.	
	2 nd A1 for all correct terms (2sf or better). May be implied by a correct ans	
	Allow truncation e.g. 44.2	
	3 rd A1 awrt 4.91 . Condone 4.915	
	2 nd B1 for correct degrees of freedom (may be implied by a cv of 5.991)	
	3 rd B1ft for cv that follows from their degrees of freedom	
	3 rd M1 for a correct statement linking their test statistic and their cv	
	Contradictory statements score M0 e.g. "significant, do not reject H0"	
	Condone "reject H1 "	
	4th A1 for a correct comment in context - must mention "gender" and "happiness"	
	Condone "relationship" or "connection" here but not "correlation".	
	e.g. "There is no evidence of a relationship between gender and happiness"	
	No follow through. If e.g hypotheses are the wrong way around A0 here.	
	SC Use of calculator with no working may get M0A0B1M1A0A1B1B1M1A1	
I	I	

PMT

Question Number	Scheme	Marks
4	E(A) = E(B) + 4E(C) - 3E(D)	M1
	= 22	A1
	Var(A) = Var(B) + 16Var(C) + 9Var(D)	M1
	= 168.25	A1
	P (A < 45) = P $\left(Z < \frac{45 - 22}{\sqrt{168.25}} \right)$ = P (Z < 1.773)	M1
	= 0.9616 aw	vrt 0.962 A1
		(
		Total 6
	Notes	
	$1^{\text{st}} \text{ M1 for } E(4C) = 4E(C) \text{ and } -E(3D) = -3E(D)$	
	1 st A1 for 22 cao	
	2^{nd} M1 for use of Var $(aX) = a^2$ Var X and + their '9Var(D)'	
	2 nd A1 for 168.25 cao	
	3 rd M1 for standardising using their mean and their sd	
	3 rd A1 for awrt 0.962. NB Calculator gives 0.961899	

Question Number	Scheme							Marl	ks
5(a)	The seeds are independent /	There ar	e a fixe	l numbe	er of seeds	in a row /	There are only		
	two outcomes to the seed get	rminatin	g – eithe	er it gern	ninates or	it does not	/ The probability		
	of a seed germinating is cons	tant						B1 B1	
(b)	$(0 \times 2) \pm (1 \times 6) \pm (2 \times 11) \pm (2 \times 11)$	3√10)⊥	(1×25)	$) \pm (5 \times 3)$	$(2) \pm (6 \times 1)$	$(6) \pm (7 \times 0)$) 504	M1	(
(~)	$(0 \times 2) + (1 \times 6) + (2 \times 11) $	12	$\frac{(4 \times 25)}{0 \times 7}$) 1 (3×3	2) 1 (0×1	.0) 1 (7 ×)	$\frac{9}{2} = \frac{364}{840}$		
							= 0.6 **	A1cso	
	n = 0.6 $n = 0.4$								(
(c)	p = 0.6 q = 0.4 s = 120 × 21q ⁵ p ² = 120 × 21	$\mathbf{v} \cap A^5 \mathbf{v}$	$0.6^2 - 9$	29				B1	
	$t = 120 \times 35q^3p^4 = 120 \times 35q^3p^4$	x 0.4° x	$0.6^{\circ} = 3$	4.84				B1	(
(d)	H ₀ : A binomial distribut	ion is a	suitable	model.				B1	,
	H _{1:} A binomial distribution	on is not	t a suitat	ole mode	1.				
	Observed number of rows	19	19	25	32	25		M1	
	Expected number of rows	11.55	23.22	34.84	31.35	19.04			
	$(O-E)^2$	4.81	0.77	2.78	0.013	1.87			
	E								
	$\frac{(O-E)^2}{E}$ $\frac{O^2}{E}$	31.26	15.55	17.94	32.66	32.83			
	E = 5 - 2 = 3							B1ft	
	Critical value for $\chi^2 = 11.345$							B1ft	
	$\sum \frac{(O-E)^2}{E} = 10.23$ or $\sum \frac{O^2}{E} - N = 130.23 - 120 = 10.23$							M1A1	
	E E E E E E E E E E								
	A binomial is a suitable model.							A1	
							Total 1.	3	
			Ν	Notes				100011	
(a)	Any two and at least one mus								
(b)	M1 require at least two correct A1 cso as given answer	et terms	in nume	rator an	u/(120X7)	01/120 the			
(c)	Cao for each B1								
(d)	1^{st} B1 for both hypotheses. B0 if they include 0.6 Condone $X \sim B(n,p)$ etc								
	1 st M1 for using some combined columns (<8)								
	2 nd B1ft follows from 'their no of columns' -2 3 rd B1ft follows from the degrees of freedom								
	_								
	2^{nd} M1 for attempting $\frac{(O-E)^2}{E}$ or $\frac{O^2}{E}$ with at least 2^{nd} (3 seeds) and 4^{th} (5 seeds) accurate								
	to 2sf								
	Contradictory statements score M0 e.g. "significant" do not reject H0								
	1 st A1 for awrt 10.2				,• ,•	. 1	11		
	2 nd A1 dependent on 2 nd M for a correct comment suggesting that binomial model is suitable. No follow through . Condone mention of 0.6 here. Hypotheses wrong way round scores A0								

P٨	ΛT

Question Number	Scheme	Marks
6(a)	$\overline{X} = \frac{1}{n} \left(X_1 + \ldots + X_n \right)$	
	$E\left(\overline{X}\right) = \frac{1}{n}E(X_1 + \ldots + X_n)$	
	$= \frac{1}{n} (E(X_1) + \dots + E(X_n))$	
	$=\frac{1}{n}(\mu + \ldots + \mu)$	
	$=\frac{n\mu}{n}=\mu$	B1cso
	n r	(1)
(b)	$\bar{x} = \frac{1}{5}(197 + 203 + 205 + 201 + 195)$	
()	$ \begin{array}{c} x = \frac{1}{5}(197 + 203 + 203 + 201 + 193) \\ = 200.2(g) \end{array} $	B1
		M1
	$s^{2} = \frac{1}{n-1} (\sum x^{2} - n\bar{x}^{2})$ or $\frac{n}{n-1} V \text{ ar } x$	1011
	$=\frac{1}{5-1}(200469 - 5(200.2^2))$	
	= 17.2	A1
		(3)
(c)	We require $2 \times 1.25 \ge$ Width of confidence interval	
	$2.5 \ge \frac{2 \times 1.96 \times 4.8}{\sqrt{n}}$ or $1.25 \ge \frac{1.96 \times 4.8}{\sqrt{n}}$ or $\frac{1.25}{\frac{4.8}{\sqrt{n}}} \ge 1.96$	M1B1
	\sqrt{n}	
	$\sqrt{n} \ge \frac{2 \times 1.96 \times 4.8}{2.5} = 7.5264$ $n \ge 56.6(5)$	A1
		Al
	Minimum sample size is 57	
		(4)
		Total 8
	Notes	
(a)	B1 cso: require $E(\overline{X}) = \mu$ with at least 1 correct intermediate step and no incorrect working.	
(b)	B1 for 200.2 or $\frac{1001}{5}$	
	5	
	M1 for use of correct formula. Accept $\frac{1}{4}S_{xx} = \frac{1}{4} \times 68.8$	
	A1 for awrt 17.2	
(c)	M1 for use of any equivalent expression. Accept equality. Accept their <i>s</i> instead of 4.8	
	B1 for 1.96 seen with s.e.	
	1 st A1 for 56.6(5)	
	2 nd A1 for 57. Must follow from correct working e.g. $\sqrt{n} \le 7.5264$ resulting in $n = 57$ award A0	

Question Number	Scheme	Mar	ks	
7(a)	$z = \pm 3.2905$	B1 M1		
	$\sigma = \frac{30}{3.2905}$	111		
	<i>σ</i> = 9.117 **	A1cso	(3)	
(b)	$H_0: \mu = 1000 H_1: \mu < 1000$	B1		
	mean weight = 999.54	B1		
	$z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{(999.54 - 1000)}{\frac{9.117}{\sqrt{10}}} = -0.160 \text{or} \frac{c - 1000}{\sqrt{83.12/10}} = -2.3263 \therefore \text{CR } c < 993.29$	M1A1		
	1% critical value = -2.3263	B1		
	-2.3263 < -0.160			
	Accept H ₀ / not in critical region	dM1		
	There is no evidence that that the machine is delivering packets of mean weight less than 1 kg	A1ft	(7)	
		Tot	tal 10	
	Notes			
(a)	M1 for 30/'their $ z $ '>1			
	A1 cso as given answer			
(b)	1 st B1 both hypotheses correct.			
	Accept 1kg in hypotheses if consistent units used in working usually either kg or g.			
	2 nd B1 999.54 (g) or 0.99954 (kg)			
	1 st M1 for standardising using their mean allow \pm , 1000 and $\frac{9.117}{\sqrt{10}}$ o.e. in kg			
	1^{st} A1 awrt -0.160 unless clearly using $ z $ (stated) then accept 0.160 or CR awrt 993			
	Condone -0.16 if fully correct expression seen.			
	3^{rd} B1 ± 2.3263 sign consistent with test statistic or $p = 0.4364 > 0.01$ NB $p = 0.5636 < 0.99$			
	2 nd dM1 dependent upon 1 st M for a correct statement linking their test statistic and their cv			
	Controlistome determined and MO and "significant de meteriest II."			
	Contradictory statements score M0 e.g. "significant, do not reject H ₀ "			
	2^{nd} A1 for correct conclusion in context. Must mention 'machine' and 'packets'.			

Ρ	Y٨	ſ	Τ

Question Number				Schei	ne						Mar	ks
8(a)	$r = \frac{9.3433}{\sqrt{0.0632 \times 1957.5556}}$										M1	
	$\sqrt{0.0632 \times 1957.5556}$ = 0.840										A1	
	- 0.010											(2)
(b)	$H_0: \rho = 0 \ H_1: \rho > 0$										B1	
	$\begin{array}{l} n_0 \cdot \rho = 0 n_1 \cdot \rho \neq 0 \\ \text{Critical value} = 0.5822 \end{array}$											
	0.840 > 0.5822 There is evidence to reject H ₀ .											
	There is evidence of a po				en a m	an's h	eight a	nd his	weigh	t.	A1ft	
												(4)
(c)	Man	А	В	С	D	Е	F	G	Η	Ι		
	Actual weight	1	2	7	3	4	5	8	6	9	B1	
	Peter's order	1	4	2	6	3	8	5	9	7	B1	
	d^2	0	4	25	9	1	9	9	9	4		
	$\sum d^2 = 70$										M1A1	
	$r = 1 = \frac{6\sum d^2}{2}$										dM1	
	$r_{\rm s} = 1 - \frac{1}{n(n^2 - 1)}$											
	$r_{s} = 1 - \frac{6\sum d^{2}}{n(n^{2} - 1)}$ $= 1 - \frac{6\times70}{9(81 - 1)}$											
	= 0.417										A1	
												(6)
(d)	$H_0: \rho = 0 \ H_1: \rho > 0$										B1	
	Critical value 0.600	B1										
	(0.417 < 0.600) There is i	M1										
	Peter does not have the al	oility to c	correctly	order	men, ł	y weig	ght, fro	om the	ir phot	ograph.	A1	
												(4)
											To	tal 16

	Notes
(a)	M1 Clear use of $r = \frac{S_{xy}}{\sqrt{S_{yx}S_{yy}}}$
(b)	A1 0.840 cao 1^{st} B1 for both hypotheses in terms of ρ , one tail H1 must be compatible with their r
	Hypotheses just in words e.g. "no correlation" score B0
	2 nd B1 for 0.5822 cao
	M1 for a statement comparing 'their r' with 'their cv'
	A1 for a correct contextualised comment. Must mention positive correlation, be
	carrying out a 1-tailed test and mention height and weight. Follow through their <i>r</i> and their cv (provided their $ cv < 1$ and their $ r < 1$)
(c)	1^{st} B1 for attempt to rank actual weight / Peter's order with at least 4 correct
(0)	2^{nd} B1 for correct rankings for both (one or both may be reversed)
	1^{st} M1 for use of $\sum d^2$ with at least 4 values correct and attempt to add
	1 st A1 for 70 or 170 with reversed rankings
	2^{nd} dM1 for use of the correct formula, follow through their $\sum d^2$. Dependent on 1^{st} M1
	If answer is not correct, a correct expression is required.
	2^{nd} A1 for awrt 0.417 or $\frac{5}{12}$
(d)	1 st B1 for both hypotheses in terms of ρ or ρ_s One tail H ₁ must be compatible with their
	ranking
	Hypotheses just in words e.g. "no correlation" score B0
	2 nd B1 for cv of 0.6(00) cao
	Their cv must be compatible with their H_1 which may be in words
	M1 for statement comparing 'their r' with 'their cv'
	A1 for a correct contextualised comment. Must mention Peter and Men.
	Follow through their r and their cv (provided their $ cv < 1$ and their $ r_s < 1$)

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

Mark Scheme (Final)

Summer 2015

Pearson Edexcel International A Level in Statistics 3 (WST03/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2015 Publications Code IA042726 All the material in this publication is copyright © Pearson Education Ltd 2015

General Marking Guidance

• All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

• Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.

• Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.

• There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.

• All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

• Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.

• Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- _ or d... The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

June 2015 WST03 Statistics 3 Mark Scheme

Question Number	Scheme	Marks
1. (a)	$\{w\} = 018 \text{ or } 18$ 018 or 18	B1
	(x) = 10 10	[1]
(b)	$\{x\} = 18$	B1
(c)	{prob =} 0 0	[1] B1
		[1]
(d)	 Advantage: Any one of: <u>Simple or easy</u> to use also allow "quick" or "efficient" (o.e.) It is suitable for large samples (or populations) 	B1
	• Gives a good spread of the data	
	Disadvantage: Any one of:	
	• The alphabetical list is (probably) <u>not random</u>	D1
	• <u>Biased</u> since the list is not (truly) random	B1
	• <u>Some combinations</u> of names are <u>not possible</u>	[2]
		[2] (Total 5)
	Notes	(100010)
(d)	If no labels are given treat the 1 st reason as an advantage and the 2 nd as a disadvantag 1 st B1: for advantage 2 nd B1: for disadvantage "it requires a sampling frame" is 2 nd B0 since the alphabetical list is given.	e
	Note: Do not score both B1 marks for opposing advantages and disadvantages.	

Question Number					Schem	ne						Marks
1 (unio di		A	В	С	L	N	R	S	Т	Y		
2. (a)	Judge 1	6	3	4	9	2	8	1	5	7		
	Judge 2	A 6 8	4	5	7	3	9	1	5 2	6		
	or											M1
		S	N	В	С	Т	A	Y	R	L		
	Judge 1	1	2	3	4	5	6	7	8	9 7		
	Judge 1 Judge 2	1	3	4	5	2	8	6	9	7		
	$\sum d^2 = 4 + $	1+1+	4 + 1 +	-1 + 0	+9+1	l						M1
		or 0 +					4 = 22				$\sum d^2 = 22$	A1
	6(22	2)										M1;
	$r_s = 1 - \frac{6(22)}{9(80)}$	$\frac{-y}{(0)}; = 0$).81666	666							$\frac{49}{60}$ or awrt 0.817	A1
												[5
(b)	$\mathbf{H}_{0}: \boldsymbol{\rho} = 0 ,$	$H_1: \rho$	> 0									B1
	Critical Valu	ie = 0.7	833 <u>oi</u>	CR:	$r_{s} \ge 0$).7833					0.7833	B1
							ct H ₀	(o.e.)				M1
	Since $r_s = 0.8166$ it lies in the CR, <u>or</u> reject H ₀ (o.e.) The two judges (or "they") are in <u>agreement</u> or											
	there is a <u>positive correlation</u> between the ranks of the two judges.											A1ft
												[4
												(Total 9
(2)	1 st M1 for a			1			otes					
(a)	$1^{\text{st}} \text{M}1$ for a $2^{\text{nd}} \text{M}1$ for a									- 22 0	or 221 for reverse ranks)
)
											d by correct answer.	
	3^{rd} M1 for u	use of the	he corr	ect for	mula w	vith the	ir $\sum a$	² (if it	is clea	rly stat	ed)	
	If t	he ansv	ver is n	ot corr	ect the	n a coi	rect ex	pressio	on is re	quired		
False	e.g Alphabe	e.g Alphabetic ranking: Gives Judge 1: 7 5 2 3 8 1 9 6 4										
Ranking					Judge	2: 7	852	239	4 1 6	\sum	$d^2 = 162$ and $r_s =$	-0.35
	Scores: M0(for ranking), M1(for attempt at d^2 row), A0, M1 (for use of their $\sum d^2$), A0 i.e. 2 out										2 out of $\frac{1}{2}$	
	Can follow through their r_s in (b)											
					Ca	11 10110	w uiro	ign the	r_s	ui (U)		
(b)	1 st B1 for bo	oth hype	otheses	stated	correc	tly in t	erme	f a (all	ow a) H. m	ust he compatible with	ranking
(0)		1 st B1 for both hypotheses stated correctly in terms of ρ (allow ρ_s) H ₁ must be compatible with ranking 2 nd B1 for $c_V = 0.7833$ (independent of their H ₁ (no 2-tail value in tables) but, compatible sign with their r										
	2^{nd} B1 for cv = 0.7833 (independent of their H ₁ (no 2-tail value in tables) <u>but</u> compatible sign with										itil then <i>r_s</i>	
	M1: for a correct statement (in words) relating their r_s with their critical value.											
e.g. "reject H ₀ ", "in critical region", "significant", "positive correlation" May be implied by a correct contextual comment.							tion					
low 1							word N	1010				
cv >1	If their					-					are in agreement" (o.c.)	for Alft
	If their r_s > their cv then "significant" (o.e.) for M1 and "judges are in agreement" (o.e.) for A1f If their r_s < their cv then "not significant" (o.e.) for M1 and "judges don't agree" (o.e.) for A1ft											
									M1 an	d "judg	ges don't <u>agree</u> " (o.e.) f	or Alft
	Alft: for a c			-				ext.				
		tive co						no :	an o o	nt''		
	FOI I	everse		s shoul	u sun s	say ji	iuges <u>a</u>		greeme	ill		

(b) <i>r</i> <i>s</i>	$r = 200 \times \frac{e^{-1.6}}{2}$			$\frac{(1)+5(6)}{200} = \frac{320}{200}$	$\frac{0}{-} = 1.6$ *		least 2	B1 *			
S		$\frac{(1.6)^2}{21}$ {= 51.		$\widehat{\lambda} = \frac{0(47) + 1(57) + 2(46) + 3(35) + 4(9) + 5(6)}{200} = \frac{320}{200} = 1.6 * $ Full exp' or at least 2 products and 320/200 seen							
	y = 200 - (40.3)	2!	68550861}		Us	ing $r = 200$	$\times \frac{\mathrm{e}^{-1.6}(1.6)^2}{2!}$	M1	[1]		
r		38 + 64.61 +	their $r + 27.5$	57 + 11.03) {=	4.72449139.	} <u>or</u> their	r + s = 56.41	M1			
1	r = 51.685508	861 and <i>s</i> =	= 4.72449139)	r = awrt	51.69 and s	= awrt 4.72	A1	[2]		
	H_0 : Poisson (distribution) is a suitable/ sensible (model) H_1 : Poisson (distribution) is not a suitable/ sensible (model).							B1	[3]		
	Number of	Observed	Expected	Combined	Combined	$\frac{(O-E)^2}{E}$	O^2				
	accidents	Observeu	Expected	Observed	Expected	E	$\frac{O^2}{E}$				
	0	47	40.38	47	40.38	1.0853	54.7053				
_	1	57	64.61	57	64.61	0.8963	50.2863				
-	2	46	51.69	46	51.69	0.6264	40.9364				
-	3 4	35 9	27.57 11.03	35	27.57	2.0024	44.4324				
	≥5	6	4.72	15	15.75	0.0357	14.2857	M1			
					Totals	4.6461	204.6461				
	$K^2 = \sum \frac{(O - E)}{E}$	$E)^2$	O^2 200	4 6 4 6 1				M1;			
	$X = \sum_{E} \frac{1}{E}$	$\overline{\Sigma}$ or Σ	\overline{E} = 200 g	;= 4.6461			awrt 4.65	A1			
v	v = 5 - 1 - 1 = 3 3										
	$\chi_3^2(0.10) = 6.251 \implies CR: X^2 \ge 6.251$ [Since $X^2 = 4.6461$ does not lie in the CR, then there is insufficient evidence to reject H ₀]										
[S	Since $X^2 = 4$.	6461 does no	ot lie in the C	R, then there is	s insufficient e	evidence to re	eject H ₀]				
	The number of ne <i>supervisor</i> '	-	•	modelled by a l	Poisson distri	bution <u>or</u>		A1 ft			
	-							(Total	[7] l 11)		
				Note	es				/		
(b) N	lote: Allow	A1 for $s = a$	wrt 4.74 (fo	und as a result	of using expe	ected values t	o full accuracy	y.)			
	Allov Inclu	w Poisson is a sion of 1.6 fo	i "good fit/mo r mean in hyj	point Poisson a codel" but <u>not</u> " potheses is B0 nts and ≥ 5 acc	good method' but condone i	in conclusion		is M0			
	1st M1:For an attempt to pool 4 accidents and ≥ 5 accidents or pool when $E_i < 5$ No pooling2nd M1:For an attempt at the test statistic, at least 2 correct expressions/values (to awrt 2 d.p.)1st A1:For awrt 4.65 (score M1M1A1 if awrt 4.65 seen)If no pooling can allow 2nd M1 if $X^2 = 5.33$ is seen										
- 0				n = 5.55 is 2 from their <i>n</i> .	50011		B1B1 may be in				
			-	0), where $k =$	n-1-1 from		6.251 (if poolin for no pooling	g) or 7.7'	79		
	nd A1ft: (<i>Dep</i> .	. on the 2^{nd} M	1) For corre	ct comment in or <i>supervisor</i> .	context based	d on their test	statistic and t		ical		
				.g. "significant							
Ν				spected frequer					,		
		64855 and				Ľ	E				

Question Number	Scheme		Marks								
4. (a)	Let X = weight of a sack of potatoes, $X \sim N(25.6, 0.24^2)$										
()	So $D = X_1 - X_2 \sim N(0, 2(0.24)^2)$ or $D \sim N(0, 0.1152)$	Attempt at D and $D \sim N(0,)$ (0.24) ² + (0.24) ² ; 0.1152	M1 A1; A1								
	$\left\{ P(D > 0.5) = \right\} 2 P(D > 0.5)$	$2 \times P(D > 0.5)$ can be implied	dM1								
	$= 2 \times P\left(Z > \frac{0.5}{\sqrt{0.1152}}\right)$		dM1								
	$= 2 \times P(Z > 1.4731) \underline{\text{or}} = 2(1 - 0.9292)$	40.141 40.140	A 1								
	= 0.1416	awrt 0.141 or awrt 0.142	A1 [6								
(b)	Let <i>Y</i> = weight of an empty pallet, <i>Y</i> ~ N(20.0, 0.32 ²) So <i>T</i> = $X_1 + X_2 + + X_{30} + Y$										
		30(25.6) + 20 <u>or</u> 788	B1								
	$T \sim N(30(25.6) + 20, \ 30(0.24)^2 + 0.32^2)$	$30(0.24)^2 + 0.32^2$	M1								
	$T \sim N(788, 1.8304)$	N and 1.8304 or awrt 1.83	A1								
	$\left\{ P(T > 785) = \right\} P\left(Z > \frac{785 - 788}{\sqrt{1.8304}}\right)$		M1								
	= P(Z > -2.2174)										
	= 0.9868	awrt 0.987	A1								
			[5] (Total 11)								
(-)	Notes		ard M1								
(a)	1^{st} M1:For clear definition of D and normal distribution with mean of 0 (Can be implied by 3^{rd} M1) 1^{st} A1:for correct use of Var($X_1 - X_2$) formula										
	2 nd A1: for 0.1152										
	2 nd dM1: For realising need $2 \times P(D > 0.5)$ (Dependent on 1 st M1 i.e. must be using suitable <i>D</i>)										
	3^{rd} dM1: Dep on 1st M1 for standardising with 0.5, 0 and the P(Z > 1.47) implies 1^{st} M1 1^{st} A1 2^{nd} A1 and 3^{rd} M1 Correct answer only will score 6 out of 6		(0.e.)								
(b)	B1: For a mean of $30(25.6) + 20$. Can be implied by 788.										
	1^{st} M1: For $30(0.24)^2 + 0.32^2$. Can be implied by 1.8304 or awrt 1.83										
	Allow M1 for swapping error i.e. $30 \times 0.32^2 + 0.24^2$ if the expression is seen 1 st A1: For normal and correct variance of 1.8304 or awrt 1.83.										
	Normality may be implied by standardisation 2^{nd} M1: For standardising with 785 with their mean and st. dev($\neq 0.24$) Must lead to P(Z > - ve) oe.										
	2 nd A1: awrt 0.987 Correct answer only will score 5 out of 5										
	Note: Calculator answers are (a) 0.14071, (b) 0.98670.										

Question Number	Scheme									rks	
5.	H_0 : Grades H_1 : Grades	-			_			ated) "grades" and "gender" mentioned at least once.	B1	(1)	
	Observe	d	Male)	Female			An attempt to convert percentages			
	Distinctio	n	37		44			M1			
	Merit		127		96						
	Unsatisfact	ory	36		20			All observed frequencies are correct.	A1		
	Expected	1	Male	•	Female	e	Totals	Some attempt at (Row Total)(Column Total)	M1		
	Distinctio	n	45		36		81	(Grand Total)	1011		
	Merit		123.88	39	99.111		223	Can be implied by a correct E_i			
	Unsatisfact Totals	ory	31.11 200	1	24.889 160)	56 360	All expected frequencies are correct to nearest integer.	A1		
				(0	$(E - E)^2$		O^2	At least 2 correct terms for $(Q - E)^2 = Q^2$			
	Observed 37	-	ected		$\frac{(O-E)^2}{E}$ 1.422		$\frac{\frac{O^2}{E}}{30.422}$	$\frac{(O-E)^2}{E} \text{ or } \frac{O^2}{E} \text{ or correct}$ expressions with their E_i .	M1		
	44				1.778		53.778	Accept 2 sf accuracy			
	127).078		130.189	for the M1 mark.			
	96				0.098		92.987	All correct $\frac{(O-E)^2}{E}$ or $\frac{O^2}{E}$ terms			
	36	31.			0.768		41.657	L L	A1		
	20	24.	889	(0.960		16.071	to either 2 dp or better. Allow truncation.	Π		
		ſ	Fotals	5	5.104		365.104	$(\Rightarrow$ by awrt 5.1 if 3 rd M1 seen)			
	$X^{2} = \sum \frac{(O-E)^{2}}{E}$ or $\sum \frac{O^{2}}{E} - 360$; = awrt 5.1 awrt 5.1										
	v = (3-1)(2-1) = 2 (<i>v</i> =) 2 (Can be implied by 5.991)										
	$\chi_2^2(0.05) = 5.991 \implies CR: X^2 \ge 5.991$ For 5.991 only										
	Since $X^2 = 5.1$ does not lie in the CR, then there is insufficient evidence to reject H ₀										
	Business Studies grades and gender are independent or There is no association between Business Studies grades and gender. Or										
	Head of department's (belief) is correct										
							Not				
	Final M1: For a correct statement linking their test statistic and their critical value (> 3.8) Note: Contradictory statements score M0. E.g. "significant, do not reject H_0 ".										
	 Final A1ft: For a correct ft statement in context – must mention "grades" and "gender" or "sex" or "head of department" Condone "relationship" or "connection" here but not "correlation". e.g. "There is no evidence of a relationship between grades and gender" 										
5.10 only	Just seei	ng 5.1(0 only	/ can	imply 1 st	3 N	As but lose	s 1 st 3 As so can score 4 out of 7 (Qu says	s "show	·")	
	Note: Full accuracy gives $X^2 = 5.104356$ and p-value 0.0779										

 H₀: Grades an H₁: Grades an Observed Distinction Merit Unsatisfactor Expected Distinction Merit Unsatisfactor 	nd gender a nd gender a Mal 18.5 63.5	re inc re de 5 5)	dependent pendent (c Female 27.5 60.0 12.5	(or not associ or associated)	nstead of observed values. (ated) "grades" and "gender" mentioned at least once. These marks cannot be obtained.	B1 M0 A0								
H ₁ : Grades an Observed Distinction Merit Unsatisfactor Expected Distinction Merit Unsatisfactor	Mal 18.5 63.5 y 18.6 Mal 0.1 Mal 23	re de e 5 5	pendent (d Female 27.5 60.0 12.5	or associated)	mentioned at least once.									
Observed Distinction Merit Unsatisfactor Expected Distinction Merit Unsatisfactor	Mal 18.5 63.5 y 18.0 Mal 23	e 5 5	Female 27.5 60.0 12.5											
Distinction Merit Unsatisfactor Expected Distinction Merit Unsatisfactor	18.5 63.5 y 18.0 Mal 23	5	27.5 60.0 12.5		These marks cannot be obtained.	M0 A0								
Merit Unsatisfactor Expected Distinction Merit Unsatisfactor	63.5 y 18.0 Mal 23	5)	60.0 12.5		These marks cannot be obtained.	MO AU								
Unsatisfactor Expected Distinction Merit Unsatisfactor	y 18.0 Mal 23)	12.5											
Expected Distinction Merit Unsatisfactor	Mal 23		I											
Distinction Merit Unsatisfactor	23	e												
Distinction Merit Unsatisfactor	23	e	_	Some attempt at										
Merit Unsatisfactor			Female	Totals	(Row Total)(Column Total)									
Unsatisfactor	61.7		23	46	(Grand Total)	M1								
		75 61.75		123.5	Can be implied by one of these E_i 's									
T (1	ry 15.2	5	15.25	30.5										
Totals	100)	100	200	Expected frequencies are not correct.	A0								
					At least 2 "correct" terms for									
Observed	Exported	(0	$(D - E)^2$	O^2	$(O-E)^2$ or O^2 or correct									
-			E	E		M1								
18.5	23	0.8804		14.8804	-									
27.5	23	0	.8804	32.8804		A0								
63.5	61.75	0	.0496	65.2996										
60.0	61.75			58.2996	_									
					This mark cannot be obtained.									
12.5					-									
	Totals	2		202.8518										
$X^2 = \sum \frac{(O - I)}{I}$	$\frac{(E)^2}{E}$ or $\sum_{k=1}^{\infty}$	$\sum \frac{O}{B}$	$\frac{0^2}{2}$ - 360	;= 2.8518	This mark cannot be obtained.	A0								
v = (3-1)(2 -	- 1) = 2				(v =) 2 (Can be implied by 5.991)	B1								
$\chi^2_2(0.05) = 5.9$	91 \Rightarrow CR:	X^2	≥ 5.991		For 5.991 only	B1								
Since $X^2 = 2.8$	36 does not	lie ii	n the CR,	then there is in	nsufficient evidence to reject H_0	M1								
					Not available since comes from incorrect working.	A0								
						[1 (Total 1								
16 1' 1 .						(l								
	-	-												
	$ \begin{array}{r} 18.5 \\ 27.5 \\ 63.5 \\ 60.0 \\ 18.0 \\ 12.5 \\ \end{array} $ $ \begin{array}{r} X^2 = \sum \frac{(O - V_{12})^2}{V_{22}} \\ V = (3 - 1)(2 - V_{22})^2 \\ Since X^2 = 2.8 \\ \end{array} $ If a candidate u	Observed Expected 18.5 23 27.5 23 63.5 61.75 60.0 61.75 18.0 15.25 12.5 15.25 Totals $X^2 = \sum \frac{(O-E)^2}{E}$ or $\sum_{k=1}^{\infty} \sum_{k=1}^{\infty} $	Observed Expected (C) 18.5 23 0 27.5 23 0 63.5 61.75 0 60.0 61.75 0 18.0 15.25 0 12.5 15.25 0 X ² = $\sum \frac{(O - E)^2}{E}$ or $\sum \frac{O}{E}$ $\sum \frac{O}{E}$ v = (3 - 1)(2 - 1) = 2 $\chi_2^2(0.05) = 5.991 \Rightarrow CR: X^2$ Since $X^2 = 2.86$ does not lie in	Observed Expected $\frac{(O-E)^2}{E}$ 18.5 23 0.8804 27.5 23 0.8804 63.5 61.75 0.0496 60.0 61.75 0.0496 18.0 15.25 0.4959 12.5 15.25 0.4959 Totals 2.8518 $X^2 = \sum \frac{(O-E)^2}{E}$ or $\sum \frac{O^2}{E} - 360$ $\nu = (3-1)(2-1) = 2$ $\chi_2^2(0.05) = 5.991 \Rightarrow CR: X^2 \ge 5.991$ Since $X^2 = 2.86$ does not lie in the CR, T	Observed Expected $\frac{(O-E)^2}{E}$ $\frac{O^2}{E}$ 18.5 23 0.8804 14.8804 27.5 23 0.8804 32.8804 63.5 61.75 0.0496 65.2996 60.0 61.75 0.0496 58.2996 18.0 15.25 0.4959 21.2459 12.5 15.25 0.4959 10.2459 Totals 2.8518 202.8518 $X^2 = \sum \frac{(O-E)^2}{E}$ or $\sum \frac{O^2}{E} - 360$;= 2.8518 $\nu = (3-1)(2-1) = 2$ $\chi_2^2(0.05) = 5.991 \Rightarrow CR$: $X^2 \ge 5.991$ Since $X^2 = 2.86$ does not lie in the CR, then there is in	Iotals100100200Iotals100100200Iotals100100200ObservedExpected $(O - E)^2$ O^2 18.5230.880414.880427.5230.880432.880463.561.750.049665.299618.015.250.495921.245912.515.250.495910.2459Totals2.8518202.8518 $X^2 = \sum \frac{(O - E)^2}{E}$ or $\sum \frac{O^2}{E} - 360$; = 2.8518This mark cannot be obtained. $v = (3 - 1)(2 - 1) = 2$ $(v =) 2$ (Can be implied by 5.991) $\chi_2^2(0.05) = 5.991 \Rightarrow CR: X^2 \ge 5.991$ For 5.991 onlySince $X^2 = 2.86$ does not lie in the CR, then there is insufficient evidence to reject H_0 Not available since comes from incorrect working.Notes								

Question Number	Scheme	Marks
	$\left\{\hat{\mu} = \frac{\sum x}{n} = \frac{1570}{50} = \right\} \ \overline{x} = 31.4 \qquad \qquad \overline{x} = 31.4$	B1 cao
	$\begin{cases} \hat{\mu} = \frac{\sum x}{n} = \frac{1570}{50} = \\ \delta^2 = \frac{\sum x^2 - n\bar{x}^2}{n-1} = \\ s_x^2 = \frac{49467.58 - 50(31.4)^2}{50 - 1} \end{cases}$ $\overline{x} = 31.4$	M1 A1ft
	= 3.460816 awrt 3.46	A1 [4]
(b)	[Let $Y =$ time taken to complete obstacle course in the afternoon.]	
	$\mathbf{H}_0: \boldsymbol{\mu}_x = \boldsymbol{\mu}_y \ , \ \mathbf{H}_1: \boldsymbol{\mu}_x > \boldsymbol{\mu}_y$	B1
	$(z =) \frac{"31.4" - 30.9}{}$	
	$(z =) \frac{"31.4" - 30.9}{\sqrt{\frac{"3.46"}{50} + \frac{3.03}{50}}}$	M1 A1ft
	= 1.38781 awrt 1.39	A1
	CR: $Z \ge 1.6449$ or probability = awrt 0.082 or awrt 0.083 1.6449 or better Since $z = 1.28781$ does not lie in the CP, then there is insufficient avidence to reject U	B1
	Since $z = 1.38781$ does not lie in the CR, then there is insufficient evidence to reject H ₀ Conclude that the <u>mean time</u> to complete the obstacle course is the same for the early <u>morning</u>	M1
	and late <u>afternoon</u> .	A1
		[7]
(c)	\overline{X} and \overline{Y} are both approx. <u>normally distributed or</u> $\overline{X} - \overline{Y}$ normal (Condone \overline{x} and \overline{y})	B1
(d)	Have assumed $s^2 \simeq \sigma^2$ or variance of sample \simeq variance of population	[1] B1
		[1]
	N. 4	(Total 13)
(a)	Notes B1: 31.4 cao Allow 31 minutes, 24 seconds.	
	1 st M1: A correct expression for either s or s^2 (ignore label)	
	1 st A1ft: A correct expression for s^2 with their ft \overline{x} . 3 rd A1: awrt 3.46 (Correct answer scores 3 out of 3)	
(b)	1 st B1: Both hypotheses stated correctly, with some indication of which μ is which. Eg:	$\mu_{_M}$, $\mu_{_A}$
	1 st M1: For an attempt at $\frac{a-b}{\sqrt{\frac{c}{50} + \frac{d}{50}}}$ with at least 3 of <i>a</i> , <i>b</i> , <i>c</i> or <i>d</i> correct. Allow <u>+</u>	
	1 st A1ft: for $\pm \frac{\text{their } 31.4 - 30.9}{\sqrt{\frac{\text{their } 3.46}{50} + \frac{3.03}{50}}}$ Allow $D = \overline{x} - \overline{y}$ 1.64 ~ 1.65 $= \frac{D - 0}{\sqrt{\frac{"3.46"}{50} + \frac{3.03}{50}}}$ [SE = 0.45]	.360277]
	2 nd A1: for awrt 1.39 (possibly \pm)(Allow for CV D = awrt 0.593) (NB d = 0.5)	
	Correct answer scores M1A1ftA1 <u>but</u> $0 - (31.4 - 30.9) \rightarrow -1.39$ loses this 2 nd A ma	
	2 nd B1: Critical value of 1.6449 or better (seen). Allow for probability = awrt 0.082 or awrt 0. Note: p-values are 0.0823 (tables) and 0.0826 (calculator).	.083
	 2nd M1: For a correct statement linking their test statistic and their critical value. Note: Contradictory statements score M0. E.g. "significant, do not reject H₀". 	
	3 rd A1: For a correct statement in context that accepts H ₀ (no ft) Condone "no difference in me Must mention " <u>mean time</u> ", " <u>morning</u> " and " <u>afternoon</u> " or " <u>both times of day</u> "	an times"
(c)	B1 E.g. $\overline{X} \sim N()$ need both. Allow in words e.g "sample means are normally distributed	;,
(d)	B1 condone only mentioning "x" or "y" <u>but</u> watch out for $s_x = s_y$ or $\sigma_x = \sigma_y$ which scores	B0

Question Number	Scheme	Marks
7.	Let $X =$ score on a die	
(a)	E(S) = 3.5, Var(S) = $\frac{35}{12}$ E(S) = 3.5 Var(S) = $\frac{35}{12}$ or awrt 2.92	B1 B1
(b)	So, $\overline{S} \sim N\left("3.5", \frac{"\left(\frac{35}{12}\right)"}{40}\right)$ or $\overline{S} \sim N\left("3.5", \frac{7}{96}\right)$	[2] B1ft
	$P(\overline{S} < 3) = P\left(Z < \frac{3 - "3.5"}{\sqrt{\frac{7}{96}}}\right) \{= P(Z < -1.85164)\}$	M1
	$\{=1-0.9678\}=0.0322$ 0.032 to 0.032 to 0.032	A1
		[3] (Total 5)
(a)	Notes 2 nd B1 allow awrt 2.92	
(b)	B1ft for $\overline{S} \sim N\left("3.5", \frac{"\left(\frac{35}{12}\right)"}{40}\right)$ seen or implied. Follow through their E(S) and their Var(S)	
ALT ES	NB $\frac{7}{96} = 0.07291\dot{6}$ accept awrt 0.0729 M1 for an attempt to standardise with 3, their mean (>3) and $\sqrt{\frac{\text{their Var}(S)}{40}}$. Must lead to P A1 for 0.032 ~ 0.0322 B1ft for $\sum S \sim N\left(140, \frac{350}{3}\right)$ where 140 is 40× their E(S) and variance is 40× their Var(S) M1 for $P\left(Z < \frac{120 - "140"}{\sqrt{\frac{350}{3}}}\right)$ or $P\left(Z < \frac{119.5 - "140"}{\sqrt{\frac{350}{3}}}\right)$ {= P(Z < -1.8979)} A1 for 0.032~0.0322 or (with continuity correction) 0.0287 (tables) or 0.0289 (calculator).	

Question Number	Scheme	Marks
8. (a)	$\left\{\overline{x} = \frac{29.74 + 31.86}{2}\right\} \implies \overline{x} = 30.8$ This can be implied. See note.	B1
	"1.96" $\left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 - 30.8$ or $2("1.96") \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 - 29.74$	M1
	$SE_{\bar{x}} = \frac{31.86 - 30.8}{1.96} = 0.540816 = 0.54 (2dp)$ awrt 0.54	Al
(b)	A 90% CI for μ is $\overline{x} \pm 1.6449 \left(\frac{\sigma}{\sqrt{n}}\right)$	[3] B1
	$= 30.8 \pm 1.6449(0.54) $ (their \overline{x}) \pm (their z)(their SE _{\overline{x}} from (a)) = (29.91, 31.69) (awrt 29.9 , awrt 31.7)	M1 A1
(c)	Let $X =$ number of confidence intervals containing μ	[3]
	or $Y =$ number of confidence intervals not containing μ So $X \sim Bin(4, 0.9)$ or $Y \sim Bin(4, 0.1)$	M1
	$P(X \ge 3) \text{ or } P(Y \le 1) = {}^{4}C_{3}(0.9)^{3}(0.1) + (0.9)^{4} $ ${}^{4}C_{3}(0.9)^{3}(0.1) + (0.9)^{4}$	A1 oe
	$= 0.2916 + 0.6561 = 0.9477 \qquad 0.9477 \text{ or } 0.948$	A1
		[3] (Total 9)
	Notes	, , , , , , , , , , , , , , , , , , ,
(a)	B1: $\overline{x} = 30.8 \text{ may be implied by } 1.96 \left(\frac{\sigma}{\sqrt{n}}\right) = [31.86 - 30.8] = 1.06 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.8 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.8 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.8 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.8 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.8 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.8 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.8 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.8 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.8 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.8 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.8 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.8 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.8 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.8 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.8 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.8 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.8 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.8 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.8 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.8 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.8 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.8 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.8 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.8 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.8 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.8 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.8 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.8 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.8 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.8 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.8 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.86 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.86 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.86 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.86 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.86 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.86 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.86 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.86 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.86 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.86 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.86 \text{ or } 2(1.96) \left($.86 – 29.74
	M1: A correct equation for either a width or a half-width involving a <i>z</i> -value $1.5 \le z \le 2$	
	Eg: "their $z''\left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 - "30.8"$ ft their \overline{x} or $2("their z'')\left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 - 29$	
	or "their $z''(SE_{\bar{x}}) = 31.86 - "30.8"$ or $2("their z'')(SE_{\bar{x}}) = 31.86 - 29.74$ are fine	for M1.
	A1: 0.54 or awrt 0.54 Must be seen as final answer to (a) NB $\frac{53}{98}$ as final answer is A0	
	Condone $\overline{x} \pm 1.96\sigma =$ for B1 and M1 but A0 even if they say " σ = standard error = 0. Otherwise answer only of 0.54 scores 3 out of 3	54"
(b)	B1 for use of 1.6449 or better in an attempt at a CI formula. Need at least 1.6449 (their SE M1 for attempt at CI ft their values and provided $1 \le z \le 1.7$	
(c)	M1: States or applies either $X \sim Bin(4, 0.9)$ or $Y \sim Bin(4, 0.1)$	
	Condone M1 for $0.9^4 + 0.9^3 \times 0.1$ (o.e.)	
	1 st A1: ${}^{4}C_{3}(0.9)^{3}(0.1) + (0.9)^{4}$ or $(0.9)^{4} + {}^{4}C_{1}(0.1)(0.9)^{3}$ oe	
	2^{nd} A1: 0.9477 or 0.948	

G. B. Attwood 30/05/15

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom

Mark Scheme (Results)

Summer 2015

Pearson Edexcel GCE in Statistics 3 (6691/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of gualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can touch with the details on contact get in us using our us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <u>www.pearson.com/uk</u>

Summer 2015 Publications Code UA042717 All the material in this publication is copyright © Pearson Education Ltd 2015 • All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

• Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.

• Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.

• There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.

• All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

• Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.

• Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- _ or d... The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

June 2015 6691 S3 Mark Scheme

Questio						Sch	eme							Mark	9	
Numbe		T 1 1 1 1 1 1	1		4										-	
1. ((a)	Label all the be												B1		
		Use random nu	umber	's to se	elect th	ie 10 t	DOOKS							B1	(2)	
(b)	Book	A	В	С	D	E	F	G	Н	Ι	J			(2)	
Ì	. /	Borrow rank	1	2	3	4	5	6	7	8	9	10				
Page rank 1 6 4 2 8 3								3	10	7	5	9		M1		
		d^2	0	16	1	4	9	9	9	1	16	1		M1		
		$r = 1$ 6×66 $[-1, 0, 4] = 0.6$ 06								NJ1 A 1						
		$r_s = 1 - \frac{6 \times 66}{10(100 - 1)}, [= 1 - 0.4] = 0.6$ <u>0.6</u>									M1,A1					
															(4)	
((c)	H ₀ : $\rho = 0$ H ₂	1: <i>p</i> >	> 0										B1		
		Critical value i												B1		
		0.6 > cv so sig						videnc	ce to r	eject I	Ho			D16		
		There is suppo						the ni	ımher	of na	tes in	a boo	k	B1ft		
		and the number						the m	innoci	or pag	ges m	<i>a</i> 000.	ĸ		(3)	
											Total 9)				
							otes									
((a)			-		-	-	-		-		1 160 ł				
		2^{nd} B1 for u	ise of	rando	m nun	hbers\s	selecti	on and	1 men	tioning	g the n	umber	: 10			
0	b)	1 st M1 for an	atten	npt to i	rank tl	ne nun	nber o	f page	s (at]	least 4	corre	ct) All	ow	reverse r	anks	
	~)	2^{nd} M1 for atte														
		3 rd M1 for us							-						ŕ	
										_	_	i cicai	1y 3	lated		
		A1 for 0.6		s not c -0 6 f				xpress	1011 18	requi	eu.					
			0 (01	0.01	.01 10 0	0150 1	uniko)									
((c)	$1^{st} B1$ for bo	th hyp	othese	s in ter	ms of ,	ρ , one	tail H	(com	patible	with r	anks)	Allo	ow use of	f $ ho_s$	
		Нур	othes	es just	in wo	ords e.	g. "no	correl	ation'	' score	e B0.					
		$2^{nd} B1$ for	cv of	0.5636	5 []	If they	have	a two	tail H	\mathbf{H}_1 then	n allow	0.64	85]			
		Allo	ow <u>+</u> f	for rev	erse ra	nking	but n	nust be	e same	e sign a	as r_s					
														is possibl	le.	
									Must r	nentio	n "lib	rarian'	' (01	he)		
				per of j	-			-		1:4:-	المتعاد الم	1)				
				nrough		~							1.			
				sist on associa		-		e´ or "	negat	ive" fo	or a on	e-taile	ed te	est		
		Independent of	f 1 st B	1 so if	$ r_s >$	cv n	nust sa	y ther	e is su	officier	nt evic	lence of	of	(o.e.))	
		and if $ r_s <$	cv m	nust sa	y insu	fficier	nt evid	ence o	of (o.e.) r	egardl	less of	the	ir hypoth	eses	
		~														

Question Number	Scheme	Marks					
2. (a)	$H_0: \mu_g - \mu_s = 1.5$ [$g = in a \text{ group}, s = on \text{ their own}$]	B1					
	$H_1: \mu_g - \mu_s > 1.5$	B1					
	s.e. = $\sqrt{\frac{2.1^2}{80} + \frac{1.4^2}{65}} = \left[\sqrt{0.08527}\right] = [0.292]$	M1					
	$z = \frac{8.7 - 6.6 - 1.5}{\sqrt{\frac{2.1^2}{80} + \frac{1.4^2}{65}}}$	dM1					
	= 2.0546 awrt $2.05(5)$	A1					
	cv 1% one tailed = 2.3263 Not significant, accept H ₀	B1 dM1					
	Insufficient evidence that using plan as part of a group leads to weight loss of more than 1.5 kg than using plan on one's own <u>or</u> researcher's belief not supported	A1ft					
	Cince and the large Control Lineit Theorem (CLT) and the	(8)					
(b)	Since sample is large Central Limit Theorem (CLT) applies No need to <u>assume</u> normal distribution	B1 dB1					
	No need to <u>assume</u> normal distribution	(2)					
		Total 10					
	Notes						
(a)	1 st & 2 nd B1 for hypotheses. Accept μ_1, μ_2 or μ_A, μ_B etc if there is some indica	tion of					
(a)	which is which e.g. $G \sim N(\mu_g, 8.7)$						
	which is which e.g. $G \sim N(\mu_g, 8.7)$ 1 st M1 for an attempt at se with 3 out of 4 values correct. Condone switching 2.1 a $\sqrt{\frac{2.1^2 \text{ or } 1.4^2}{80} + \frac{1.4^2 \text{ or } 2.1^2}{65}}$ 2 nd dM1 dependent on 1 st M1 for a correct numerator(must have -1.5) and ft their s 1 st A1 for awrt 2.05 3 rd B1 for ± 2.3263 or better seen or probability of awrt 0.02 3 rd dM1 dep. on 1 st M1 for a correct statement based on their normal cv and their test stat 2 nd A1ft for correct comment in context. Must mention "plan" and "group or individent"						
	NB Use of cv for difference in means D will have $D = 1.5 + 2.3263 \times s.e. = av$ requires sight of $d = 2.1$ with a comment for the 3 rd M1	vrt 2.18 and					
(b)	 1st B1 for mentioning "large samples" <u>and</u> "CLT" 2nd dB1 dependent on 1st B1 for stating no need to <u>assume</u> normality (since C it) 	LT assures					

0											
Ques Num		Scheme		Marks							
3.	(a)	Label staff (from $1 - 16$) and children (from 1	- 40)	B1							
		Use random numbers to select	1	B1							
		4 staff and 10	children	B1 (3)							
	(b)) $\bar{x} = \hat{\mu} = 31.2142$ awrt <u>31.2</u>									
	(~)			B1 M1							
		$s^2 = \frac{26983 - 14 \times "31.2"^2}{13}$		A1ft							
			= 1026.33 awrt <u>1030</u>	A1							
				(4)							
	(c)	$\frac{\sqrt[4]{1026.33}}{\sqrt{14}}$, = 8.562 awrt <u>8.56</u>	M1, A1							
		$\sqrt{14}$,								
	(d)	The variation within each stratum is quite sma	$11(\alpha \alpha)$	(2) B1							
	(d)	The difference in the means will be quite sha		B1 B1							
		overall mean will be large giving a larger overall s.e.)									
				(2) Total 11							
	N-4										
	(a)	Notes a) 1 st B1 for labelling\numbering\listing staff <u>and</u> children 2 nd B1 for use of random numbers or "randomly select" in <u>each group</u> (may be implemented by the select.									
	(a)										
		3^{rd} B1 for selecting the correct number of staf		oe implied)							
		e.g. randomly select 4 staff and 10 chil		since							
				Since							
		randomly selecting and the "each g	roup" is implied,								
	(b)	B1 for awrt 31.2 M1 for a correct expression ft their \overline{x} and all	ow transcription error in $\sum r^2$	e g 20683							
		1^{st} A1ft for a fully correct expression ft their		0.g. 27003							
		2^{nd} A1 for a wrt 1030	a only								
	(c)	M1 for attempting $\frac{\text{"their s"}}{\sqrt{14}}$ (must have 14)								
	(C)	•	/								
		A1 for awrt 8.56									
		1 st B1 for a suitable comment about variatio	\mathbf{n} (se) suggesting that variation	(se) within							
	(d)	strata is less than that overall	(~~) ~~00-~~ <u>0</u> (~~(~~ (~~))	(
		2^{nd} B1 for a suitable reason about means , point		veights will							
		vary a lot from the overall mean and so	o overall s.e. will be higher.								

Question Number	Scheme								
4. (a)	$H_0: \mu = 0.5$ $H_1: \mu \neq 0.5$	B1							
	(Significance level = $)10\%$								
	(0.5 is in the interval so not significant, accept H ₀ , can accept) $\mu = 0.5$								
		(3)							
(h	(b) $1.6449 \times \frac{\sigma}{\sqrt{100}} = 0.0247$								
	$\sigma = 0.15016 \text{ or } \frac{10 \times 0.0247}{1.6449}$ (awrt 0.15)	A1							
	$0.470 + 1.0$ σ''	M1							
	$0.479 \pm 1.96 \times \frac{\sigma}{\sqrt{150}}$	B1							
	awrt (0.455, 0.503)	A1							
		(6)							
	Notes								
(a)	51 ,								
	2 nd dB1 for 10% but accept 5% if they have a one-tail test as H ₁ 3 rd B1 for a correct comment leading to accepting H ₀								
	Ignore any 'further calculations'.								
(b)	σ								
	1 st B1 for 1.6449 or better in an attempt (could be 1.6449 $\sigma = k$ or even 1.6449 $\sigma^2 = k$)								
	1 st A1 for a correct expression for σ e.g. awrt 0.15								
	2 nd M1 for $\overline{x} \pm z \times \frac{\sigma}{\sqrt{150}}$ for any z (>1) and ft their σ and allow $\overline{x} \in (0.4633, 0.5127)$								
	Allow use of letter σ without a value.								
	2^{nd} B1 for 1.96 or better in an attempt (could be 1.96 σ or even 1.96 σ^2)								
	2 nd A1 for awrt 0.455 and awrt 0.503								

Question Number	Scheme	Marks						
5 (i)	Let $R = B_1 + B_2 + B_3 + B_4 + B_5 - 5H$ so $E(R) = -25$ (o.e.)							
	Var(R) = 5×6 ² + 5 ² ×4 ² $R \sim N(-25, \sqrt{580})$							
	$P(R > 0) = P(Z > \frac{0 - 25}{\sqrt{580}}) = P(Z > 1.04), = 0.149619(calc) or 0.1492 (tables)$							
	V280	dM1 A1 (5)						
(ii)(a)	(ii)(a) $\overline{X} \sim N\left(\mu, \frac{\sigma^2}{5}\right)$							
	$\operatorname{Var}(D) = \sigma^2 + \left\ \frac{\sigma^2}{5} \right\ \left[= \frac{6\sigma^2}{5} \right], \text{so} \qquad D \sim \operatorname{N}\left(0, \frac{6\sigma^2}{5}\right)$	M1, A1 (3)						
(b)	$P(Y_1 > \overline{X} + \sigma) = P(D > \sigma) = P\left(Z > \frac{\sigma}{\sqrt{\frac{6}{5}\sigma}}\right)$	M1						
	= $P(Z > 0.912) = 0.181(3 \text{ dp})$ (*)	A1cso (2)						
(c)	(c) Since U_1 and \overline{U} are not independent (so variance formula cannot be used)							
	Can be implied e.g. U_1 used to calculate \overline{U} , U_1 and \overline{U} from same sample o.e.	(1)						
(d)	Let $F = U_1 - \overline{U} = U_1 - \frac{(U_1 + U_2 + U_3 + U_4 + U_5)}{5}, = \frac{4U_1 - (U_2 + U_3 + U_4 + U_5)}{5}$	M1, A1						
	Var(F) = $\frac{4^2 \sigma^2 + 4\sigma^2}{5^2} = 0.8 \sigma^2$, so $F \sim N(0, 0.8 \sigma^2)$	dM1, A1						
	$P(F > \sigma) = P\left(Z > \frac{\sigma}{\sigma\sqrt{0.8}}\right) = P(Z > 1.118)$	M1						
	= 0.1314 (tables) or 0.131776(calc) awrt 0.131~0.132							
(•)	Notes							
(i)	1 st B1 for $E(R) = -25$ (or 25 if their <i>R</i> is defined the other way around) 1 st M1 for an attempt at $Var(R) = 5Var(B) + 25Var(H)$. Condone swapping of 6 ² and 4 ² 1 st A1 for normal and correct variance (ft their mean) 2 nd dM1 for attempting the correct probability and standardising with their mean and sd. This mark is dependent on 1 st M1 so if <i>R</i> is not being used or M0 for variance score M0 If their method is not crystal clear then they must be attempting P(<i>Z</i> > +ve value) o.e 2 nd A1 for answer in the range [0.149, 0.150]							
(ii)(a)	B1for correct distribution of \overline{X} (may be implied for a correct answer for D)M1for correct attempt at Var(D) (ft their Var(\overline{X})) [A1 needs must be fully correct]							
(ii)(b)	M1 for expressing probability in terms of <i>D</i> and standardising A1cso for seeing P(Z > 0.912) or prob of 1 – 0.8186 (tables) or 0.180655(calc)							
(c)	B1 correct statement that should mention U_1 and \overline{U}							
(d)	1 st M1 for forming an expression in terms of U_1U_5 only							
	1 st A1 for collecting U_1 terms and getting in a form where $Var(aX \pm bY)$ can be u 2 nd dM1 for a correct expression for Var(their <i>F</i>). Dependent on 1 st M1. 2 nd A1 for a correct distribution for <i>F</i>							
	3^{rd} M1 attempting a correct prob and standardising using their Var(<i>F</i>), σ must 3^{rd} A1cso for awrt 0.131 or 0.132	cancel						

Ques Num		Scheme						Mark	s		
6.	(a)	H_0 : U[0, 10] is a suitable model H_1 : U[0, 10] is not a suitable model									
	E $(O_i - E_i)^2$ O_i^2										
							Values of <i>D</i> Expected Freq	B1 M1A1			
		0-4 4-7	<u>22</u> 39	40 30	8.1 2.7	12.1 50.7	Expected Freq				
		4 - 7 7 - 9	25	20	1.25	31.25	4^{th} or 5^{th} col	M1			
		9 - 10	14	10	1.25	19.6	$\chi^2 = 13.65$	A1			
		I	B1, B1								
		$v = 3$, $\chi_3^2(1\%) = 11.345$ [Reject H ₀ ,] the uniform distribution over [0, 10] is not a suitable model									
	(b) Area $\propto \pi R^2$ so $r = 81, -49 = \underline{32}$ $s = 100 - "32" - 49 \text{ or } 100 - 81 = \underline{19}$										
				(3)							
	(c)	Not signific		M1, A1	(2)						
	(d)	H_{a} · The col	our\region c	hosen for the	points is ind	ependent of g	gender(or no assoc')		(2)		
	(u)	0	-	B1							
		H_1 : The colour\region chosen for the points is dependent on gender(or assoc')									
		39×65							(1)		
	(e)	$\frac{00000}{100}$						B1			
		100							(1)		
	(f)	Expected fr		r Yellow and	d Boys is 4.9	9 < 5 so col.	must be				
	(1)	pooled/com		B1							
		[This gives	a 2×3 tabl	e so $v = (2 -$	$-1) \times (3 - 1) =$	= 2]					
	(a)	4 605						B1	(1)		
	(g)	cv = 4.605 [Not signific	B1 B1								
		[1 tot signifi		(2)							
									9		
		Notes									
	(a)	2 nd B1 for the correct values for <i>D</i> (can be implied by 40, 30, 20, and 10.) 1 st M1 for at least 2 expected frequencies or clear use of a correct formula e.g. 0.4 <i>N</i>									
		1^{st} M1 for 1^{st} A1 for			uencies of C	lear use of a	a correct formula e.g	3. U.4/V			
		2^{nd} M1 for			lations from	4^{th} or 5^{th} c	column				
		2 nd A1 for	a test statis	tic of 13.65	(accept 13.7	7 to 3 sf)					
			•		B1M1A1M1						
			a correct co stic > 11.34		jecting the u	nitorm mod	el. Award provided	their test	-		
	(b)	M1 for sor			o find r						
		101 301	ne uttempt								
	(c)	M1 for a c			-						
		A1 for cor	•	0	•						
	(d)	B1 Independence or association mentioned at least once if ditto marks used.									
	(f)	Allow connection but not correlation. B1 for recognising there is an $Ei < 5$ and need for pooling/combining oe									
		B1 for recognising there is an $Ei < 5$ and need for pooling/combining oe $2^{nd}B1$ for correctly stating that Phoebe's belief is not supported by the data or (depends on									
	(g)	their cv bein				• - • PP		(<u>r</u> iia			

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom